MODEL_ZOO.md 9.79 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

Kai Chen's avatar
Kai Chen committed
12
- Python 3.6 / 3.7
Kai Chen's avatar
Kai Chen committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
- PyTorch 0.4.1
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15


## Common settings

- All baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU).
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
- We report the training GPU memory as the maximum value of `torch.cuda.max_memory_cached()`
for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows, but
closer to the actual requirements.
Kai Chen's avatar
Kai Chen committed
29
30
31
32
- We report the inference time as the overall time including data loading,
network forwarding and post processing.
- The training memory and time of 2x schedule is simply copied from 1x.
It should be very close to the actual memory and time.
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38
39
40


## Baselines

We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More models with different backbones will be added to the model zoo.

### RPN

Kai Chen's avatar
Kai Chen committed
41
| Backbone           | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 | Download |
Kai Chen's avatar
Kai Chen committed
42
| ------------------ | ---- | ------- | -------- | ---------- | -------- | ------ | -------- |
Kai Chen's avatar
Kai Chen committed
43
44
45
| R-50-FPN (caffe)   | RPN  | 1x      | 4.5      | 0.379      | 14.4     | 58.2   | -        |
| R-50-FPN (pytorch) | RPN  | 1x      | 4.8      | 0.407      | 14.5     | 57.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/rpn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN (pytorch) | RPN  | 2x      | 4.8      | 0.407      | 14.5     | 57.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/rpn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
46
47
48

### Faster R-CNN

Kai Chen's avatar
Kai Chen committed
49
| Backbone           | Type   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
Kai Chen's avatar
Kai Chen committed
50
| ------------------ | ------ | ------- | -------- | ---------- | -------- | ------ | -------- |
Kai Chen's avatar
Kai Chen committed
51
52
53
| R-50-FPN (caffe)   | Faster | 1x      | 4.9      | 0.525      | 10.0     | 36.7   | -        |
| R-50-FPN (pytorch) | Faster | 1x      | 5.1      | 0.554      | 9.9      | 36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/faster_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN (pytorch) | Faster | 2x      | 5.1      | 0.554      | 9.9      | 37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/faster_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
54
55
56

### Mask R-CNN

Kai Chen's avatar
Kai Chen committed
57
| Backbone           | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
Kai Chen's avatar
Kai Chen committed
58
| ------------------ | ---- | ------- | -------- | ---------- | -------- | ------ | ------- | -------- |
Kai Chen's avatar
Kai Chen committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
| R-50-FPN (caffe)   | Mask | 1x      | 5.9      | 0.658      | 7.7      | 37.5   | 34.4    | -        |
| R-50-FPN (pytorch) | Mask | 1x      | 5.8      | 0.690      | 7.7      | 37.3   | 34.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN (pytorch) | Mask | 2x      | 5.8      | 0.690      | 7.7      | 38.6   | 35.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_2x_20181010_results.pkl.json) |

### Fast R-CNN (with pre-computed proposals) (coming soon)

| Backbone           | Type   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
| ------------------ | ------ | ------- | -------- | ---------- | -------- | ------ | ------ | -------- |
| R-50-FPN (caffe)   | Faster | 1x      |          |            |          |        |        |          |
| R-50-FPN (pytorch) | Faster | 1x      |          |            |          |        |        |          |
| R-50-FPN (pytorch) | Faster | 2x      |          |            |          |        |        |          |
| R-50-FPN (caffe)   | Mask   | 1x      |          |            |          |        |        |          |
| R-50-FPN (pytorch) | Mask   | 1x      |          |            |          |        |        |          |
| R-50-FPN (pytorch) | Mask   | 2x      |          |            |          |        |        |          |
Kai Chen's avatar
Kai Chen committed
73
74
75

### RetinaNet (coming soon)

Kai Chen's avatar
Kai Chen committed
76
| Backbone           | Type      | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
Kai Chen's avatar
Kai Chen committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
| ------------------ | --------- | ------- | --------- | ---------- | -------- | ------ | ------- | -------- |
| R-50-FPN (caffe)   | RetinaNet | 1x      |           |            |          |        |         |          |
| R-50-FPN (pytorch) | RetinaNet | 1x      |           |            |          |        |         |          |
| R-50-FPN (pytorch) | RetinaNet | 2x      |           |            |          |        |         |          |


## Comparison with Detectron

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
and [Detectron.pytorch](https://github.com/roytseng-tw/Detectron.pytorch),
a third-party port of Detectron to Pytorch. The backbone used is R-50-FPN.

### Performance

Detectron and Detectron.pytorch use caffe-style ResNet as the backbone.
To simply utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.

We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
    <th>Detectron.pytorch</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
    <td>37.1</td>
    <td>36.4 / 36.7</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
    <td>37.7 &amp; 33.7</td>
    <td>37.3 &amp; 34.2 / 37.5 &amp; 34.4</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
    <td>38.6 &amp; 35.1 / -</td>
  </tr>
</table>

Kai Chen's avatar
Kai Chen committed
152
### Training Speed
Kai Chen's avatar
Kai Chen committed
153

Kai Chen's avatar
Kai Chen committed
154
The training speed is measure with s/iter. The lower, the better.
Kai Chen's avatar
Kai Chen committed
155
156
157
158
159
160

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
    <th>Detectron.pytorch (XP<sup>2</sup>)</th>
Kai Chen's avatar
Kai Chen committed
161
    <th>mmdetection<sup>3</sup> (V100<sup>4</sup> / XP)</th>
Kai Chen's avatar
Kai Chen committed
162
163
164
165
166
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
Kai Chen's avatar
Kai Chen committed
167
    <td>0.407 / 0.413</td>
Kai Chen's avatar
Kai Chen committed
168
169
170
171
172
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
    <td>1.015</td>
Kai Chen's avatar
Kai Chen committed
173
    <td>0.554 / 0.579</td>
Kai Chen's avatar
Kai Chen committed
174
175
176
177
178
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
    <td>1.435</td>
Kai Chen's avatar
Kai Chen committed
179
    <td>0.690 / 0.732</td>
Kai Chen's avatar
Kai Chen committed
180
181
182
183
184
185
186
187
188
189
190
191
  </tr>
</table>

\*1. Detectron reports the speed on Facebook's Big Basin servers (P100),
on our V100 servers it is slower so we use the official reported values.

\*2. Detectron.pytorch does not report the runtime and we encountered some issue to
run it on V100, so we report the speed on TITAN XP.

\*3. The speed of pytorch-style ResNet is approximately 5% slower than caffe-style,
and we report the pytorch-style results here.

Kai Chen's avatar
Kai Chen committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
\*4. We also run the models on a DGX-1 server (P100) and the speed is almost the same as our V100 servers.

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
    <th>Detectron.pytorch (XP)</th>
    <th>mmdetection (V100 / XP)</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
    <td>14.5 / 15.4</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
    <td></td>
    <td>9.9 / 9.8</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
    <td></td>
    <td>7.7 / 7.4</td>
  </tr>
</table>

Kai Chen's avatar
Kai Chen committed
225
226
227
228
229
230
231
232
233
234
### Training memory

We perform various tests and there is no doubt that mmdetection is more memory
efficient than Detectron, and the main cause is the deep learning framework itself, not our efforts.
Besides, Caffe2 and PyTorch have different apis to obtain memory usage
whose implementation is not exactly the same.

`nvidia-smi` shows a larger memory usage for both detectron and mmdetection, e.g.,
we observe a much higher memory usage when we train Mask R-CNN with 2 images per GPU using detectron (10.6G) and mmdetection (9.3G), which is obviously more than actually required.

Kai Chen's avatar
Kai Chen committed
235
> With mmdetection, we can train R-50 FPN Mask R-CNN with **4** images per GPU (TITAN XP, 12G),
Kai Chen's avatar
Kai Chen committed
236
which is a promising result.