MODEL_ZOO.md 12.8 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

Kai Chen's avatar
Kai Chen committed
12
- Python 3.6 / 3.7
Kai Chen's avatar
Kai Chen committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
- PyTorch 0.4.1
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15


## Common settings

- All baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU).
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
- We report the training GPU memory as the maximum value of `torch.cuda.max_memory_cached()`
for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows, but
closer to the actual requirements.
Kai Chen's avatar
Kai Chen committed
29
30
31
32
- We report the inference time as the overall time including data loading,
network forwarding and post processing.
- The training memory and time of 2x schedule is simply copied from 1x.
It should be very close to the actual memory and time.
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38
39
40


## Baselines

We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More models with different backbones will be added to the model zoo.

### RPN

Kai Chen's avatar
Kai Chen committed
41
42
43
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 4.5      | 0.379               | 14.4           | 58.2   | -        |
Kai Chen's avatar
Kai Chen committed
44
45
| R-50-FPN | pytorch | 1x      | 4.8      | 0.407               | 14.5           | 57.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/rpn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | 2x      | 4.8      | 0.407               | 14.5           | 57.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/rpn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
46
47
48

### Faster R-CNN

Kai Chen's avatar
Kai Chen committed
49
50
51
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 4.9      | 0.525               | 10.0           | 36.7   | -        |
Kai Chen's avatar
Kai Chen committed
52
53
| R-50-FPN | pytorch | 1x      | 5.1      | 0.554               | 9.9            | 36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/faster_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | 2x      | 5.1      | 0.554               | 9.9            | 37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/faster_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
54
55
56

### Mask R-CNN

Kai Chen's avatar
Kai Chen committed
57
58
59
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe   | 1x      | 5.9      | 0.658               | 7.7            | 37.5   | 34.4    | -        |
Kai Chen's avatar
Kai Chen committed
60
61
| R-50-FPN | pytorch | 1x      | 5.8      | 0.690               | 7.7            | 37.3   | 34.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | 2x      | 5.8      | 0.690               | 7.7            | 38.6   | 35.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
62

Kai Chen's avatar
Kai Chen committed
63
### Fast R-CNN (with pre-computed proposals)
Kai Chen's avatar
Kai Chen committed
64

Kai Chen's avatar
Kai Chen committed
65
66
| Backbone | Style   | Type   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
Kai Chen's avatar
Kai Chen committed
67
| R-50-FPN | caffe   | Faster | 1x      | 3.5      | 0.35                | 14.6           | 36.6   | -       | -        |
Kai Chen's avatar
Kai Chen committed
68
69
| R-50-FPN | pytorch | Faster | 1x      | 4.0      | 0.38                | 14.5           | 35.8   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | Faster | 2x      | 4.0      | 0.38                | 14.5           | 37.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
70
| R-50-FPN | caffe   | Mask   | 1x      | 5.4      | 0.47                | 10.7           | 37.3   | 34.5    | -        |
Kai Chen's avatar
Kai Chen committed
71
72
| R-50-FPN | pytorch | Mask   | 1x      | 5.3      | 0.50                | 10.6           | 36.8   | 34.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_mask_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | Mask   | 2x      | 5.3      | 0.50                | 10.6           | 37.9   | 34.8    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_mask_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
Kai Chen's avatar
Kai Chen committed
73
74
75

### RetinaNet (coming soon)

Kai Chen's avatar
Kai Chen committed
76
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
Kai Chen's avatar
Kai Chen committed
77
78
79
80
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      |          |                     |                |        |          |
| R-50-FPN | pytorch | 1x      |          |                     |                |        |          |
| R-50-FPN | pytorch | 2x      |          |                     |                |        |          |
Kai Chen's avatar
Kai Chen committed
81

Kai Chen's avatar
Kai Chen committed
82
83
84
85
86
87
88
89
### Cascade R-CNN

| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 5.0      | 0.592               | 8.1            | 40.3   | -        |
| R-50-FPN | pytorch | 1x      | 5.5      | 0.622               | 8.0            | 40.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20181123-c019abac.pth) |
| R-50-FPN | pytorch | 20e     | 5.5      | 0.622               | 8.0            | 41.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-c4cad178.pth) |

Kai Chen's avatar
Kai Chen committed
90
91
92
93
94
95
96

## Comparison with Detectron

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
and [Detectron.pytorch](https://github.com/roytseng-tw/Detectron.pytorch),
a third-party port of Detectron to Pytorch. The backbone used is R-50-FPN.

Kai Chen's avatar
Kai Chen committed
97
98
99
100
101
102
In general, mmdetection has 3 advantages over Detectron.

- **Higher performance** (especially in terms of mask AP)
- **Faster training speed**
- **Memory efficient**

Kai Chen's avatar
Kai Chen committed
103
104
105
### Performance

Detectron and Detectron.pytorch use caffe-style ResNet as the backbone.
Kai Chen's avatar
Kai Chen committed
106
In order to utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
Kai Chen's avatar
Kai Chen committed
107

Kai Chen's avatar
Kai Chen committed
108
In the meanwhile, we train models with caffe-style ResNet in 1x experiments for comparison.
Kai Chen's avatar
Kai Chen committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
    <th>Detectron.pytorch</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
    <td>37.1</td>
    <td>36.4 / 36.7</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
    <td>37.7 &amp; 33.7</td>
    <td>37.3 &amp; 34.2 / 37.5 &amp; 34.4</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
    <td>38.6 &amp; 35.1 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  <tr>
    <td rowspan="2">Fast R-CNN</td>
    <td>1x</td>
    <td>36.4</td>
    <td>-</td>
    <td>35.8 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>36.8</td>
    <td>-</td>
    <td>37.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN (w/mask)</td>
    <td>1x</td>
    <td>37.3 &amp; 33.7</td>
    <td>-</td>
    <td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.7 &amp; 34.0</td>
    <td>-</td>
    <td>37.9 &amp; 34.8 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
191
192
</table>

Kai Chen's avatar
Kai Chen committed
193
### Training Speed
Kai Chen's avatar
Kai Chen committed
194

Kai Chen's avatar
Kai Chen committed
195
The training speed is measure with s/iter. The lower, the better.
Kai Chen's avatar
Kai Chen committed
196
197
198
199
200
201

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
    <th>Detectron.pytorch (XP<sup>2</sup>)</th>
Kai Chen's avatar
Kai Chen committed
202
    <th>mmdetection<sup>3</sup> (V100<sup>4</sup> / XP)</th>
Kai Chen's avatar
Kai Chen committed
203
204
205
206
207
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
Kai Chen's avatar
Kai Chen committed
208
    <td>0.407 / 0.413</td>
Kai Chen's avatar
Kai Chen committed
209
210
211
212
213
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
    <td>1.015</td>
Kai Chen's avatar
Kai Chen committed
214
    <td>0.554 / 0.579</td>
Kai Chen's avatar
Kai Chen committed
215
216
217
218
219
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
    <td>1.435</td>
Kai Chen's avatar
Kai Chen committed
220
    <td>0.690 / 0.732</td>
Kai Chen's avatar
Kai Chen committed
221
  </tr>
Kai Chen's avatar
Kai Chen committed
222
223
224
225
226
227
228
229
230
231
232
233
  <tr>
    <td>Fast R-CNN</td>
    <td>0.285</td>
    <td>-</td>
    <td>0.375 / 0.398</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>0.377</td>
    <td>-</td>
    <td>0.504 / 0.574</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
234
235
236
237
238
239
240
241
242
243
244
</table>

\*1. Detectron reports the speed on Facebook's Big Basin servers (P100),
on our V100 servers it is slower so we use the official reported values.

\*2. Detectron.pytorch does not report the runtime and we encountered some issue to
run it on V100, so we report the speed on TITAN XP.

\*3. The speed of pytorch-style ResNet is approximately 5% slower than caffe-style,
and we report the pytorch-style results here.

Kai Chen's avatar
Kai Chen committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
\*4. We also run the models on a DGX-1 server (P100) and the speed is almost the same as our V100 servers.

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
    <th>Detectron.pytorch (XP)</th>
    <th>mmdetection (V100 / XP)</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
    <td>14.5 / 15.4</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
    <td></td>
    <td>9.9 / 9.8</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
    <td></td>
    <td>7.7 / 7.4</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
276
277
278
279
280
281
282
283
284
285
286
287
  <tr>
    <td>Fast R-CNN</td>
    <td>12.5</td>
    <td></td>
    <td>14.5 / 14.1</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>9.9</td>
    <td></td>
    <td>10.6 / 10.3</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
288
289
</table>

Kai Chen's avatar
Kai Chen committed
290
291
292
293
294
295
296
297
298
299
### Training memory

We perform various tests and there is no doubt that mmdetection is more memory
efficient than Detectron, and the main cause is the deep learning framework itself, not our efforts.
Besides, Caffe2 and PyTorch have different apis to obtain memory usage
whose implementation is not exactly the same.

`nvidia-smi` shows a larger memory usage for both detectron and mmdetection, e.g.,
we observe a much higher memory usage when we train Mask R-CNN with 2 images per GPU using detectron (10.6G) and mmdetection (9.3G), which is obviously more than actually required.

Kai Chen's avatar
Kai Chen committed
300
> With mmdetection, we can train R-50 FPN Mask R-CNN with **4** images per GPU (TITAN XP, 12G),
Kai Chen's avatar
Kai Chen committed
301
which is a promising result.