Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
da19bd4f
Commit
da19bd4f
authored
Oct 11, 2018
by
Kai Chen
Browse files
update fast rcnn results
parent
3a5ac395
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
59 additions
and
8 deletions
+59
-8
MODEL_ZOO.md
MODEL_ZOO.md
+59
-8
No files found.
MODEL_ZOO.md
View file @
da19bd4f
...
...
@@ -60,16 +60,16 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m
| R-50-FPN | pytorch | 1x | 5.8 | 0.690 | 7.7 | 37.3 | 34.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010.pth
)
\|
[
result
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_1x_20181010_results.pkl.json
)
|
| R-50-FPN | pytorch | 2x | 5.8 | 0.690 | 7.7 | 38.6 | 35.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010.pth
)
\|
[
result
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_2x_20181010_results.pkl.json
)
|
### Fast R-CNN (with pre-computed proposals)
(coming soon)
### Fast R-CNN (with pre-computed proposals)
| Backbone | Style | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | Faster | 1x |
|
|
|
|
|
|
| R-50-FPN | pytorch | Faster | 1x |
|
|
| |
|
|
| R-50-FPN | pytorch | Faster | 2x |
|
|
| |
|
|
| R-50-FPN | caffe | Mask | 1x |
|
|
|
|
|
|
| R-50-FPN | pytorch | Mask | 1x |
|
|
|
|
|
|
| R-50-FPN | pytorch | Mask | 2x |
|
|
|
|
|
|
| R-50-FPN | caffe | Faster | 1x |
3.5
|
0.35
|
14.6
|
36.6
|
-
|
-
|
| R-50-FPN | pytorch | Faster | 1x |
4.0
|
0.38
|
14.5
| 35.8
|
-
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010.pth
)
\|
[
result
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_rcnn_r50_fpn_1x_20181010_results.pkl.json
)
|
| R-50-FPN | pytorch | Faster | 2x |
4.0
|
0.38
|
14.5
| 37.1
|
-
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010.pth
)
\|
[
result
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_rcnn_r50_fpn_2x_20181010_results.pkl.json
)
|
| R-50-FPN | caffe | Mask | 1x |
5.4
|
0.47
|
10.7
|
37.3
|
34.5
|
-
|
| R-50-FPN | pytorch | Mask | 1x |
5.3
|
0.50
| 10.6
| 36.8
|
34.1
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010.pth
)
\|
[
result
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_mask_rcnn_r50_fpn_1x_20181010_results.pkl.json
)
|
| R-50-FPN | pytorch | Mask | 2x |
5.3
|
0.50
| 10.6
| 37.9
|
34.8
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010.pth
)
\|
[
result
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_mask_rcnn_r50_fpn_2x_20181010_results.pkl.json
)
|
### RetinaNet (coming soon)
...
...
@@ -95,8 +95,9 @@ In general, mmdetection has 3 advantages over Detectron.
### Performance
Detectron and Detectron.pytorch use caffe-style ResNet as the backbone.
To simply
utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
In order to
utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
In the meanwhile, we train models with caffe-style ResNet in 1x experiments for comparison.
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.
...
...
@@ -153,6 +154,32 @@ indicated as *pytorch-style results* / *caffe-style results*.
<td>
-
</td>
<td>
38.6
&
35.1 / -
</td>
</tr>
<tr>
<td
rowspan=
"2"
>
Fast R-CNN
</td>
<td>
1x
</td>
<td>
36.4
</td>
<td>
-
</td>
<td>
35.8 / 36.6
</td>
</tr>
<tr>
<td>
2x
</td>
<td>
36.8
</td>
<td>
-
</td>
<td>
37.1 / -
</td>
</tr>
<tr>
<td
rowspan=
"2"
>
Fast R-CNN (w/mask)
</td>
<td>
1x
</td>
<td>
37.3
&
33.7
</td>
<td>
-
</td>
<td>
36.8
&
34.1 / 37.3
&
34.5
</td>
</tr>
<tr>
<td>
2x
</td>
<td>
37.7
&
34.0
</td>
<td>
-
</td>
<td>
37.9
&
34.8 / -
</td>
</tr>
</table>
### Training Speed
...
...
@@ -184,6 +211,18 @@ The training speed is measure with s/iter. The lower, the better.
<td>
1.435
</td>
<td>
0.690 / 0.732
</td>
</tr>
<tr>
<td>
Fast R-CNN
</td>
<td>
0.285
</td>
<td>
-
</td>
<td>
0.375 / 0.398
</td>
</tr>
<tr>
<td>
Fast R-CNN (w/mask)
</td>
<td>
0.377
</td>
<td>
-
</td>
<td>
0.504 / 0.574
</td>
</tr>
</table>
\*
1. Detectron reports the speed on Facebook's Big Basin servers (P100),
...
...
@@ -226,6 +265,18 @@ The inference speed is measured with fps (img/s) on a single GPU. The higher, th
<td></td>
<td>
7.7 / 7.4
</td>
</tr>
<tr>
<td>
Fast R-CNN
</td>
<td>
12.5
</td>
<td></td>
<td>
14.5 / 14.1
</td>
</tr>
<tr>
<td>
Fast R-CNN (w/mask)
</td>
<td>
9.9
</td>
<td></td>
<td>
10.6 / 10.3
</td>
</tr>
</table>
### Training memory
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment