train.py 9.6 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
import logging
import random
3
import re
myownskyW7's avatar
myownskyW7 committed
4
5
from collections import OrderedDict

Kai Chen's avatar
Kai Chen committed
6
import numpy as np
myownskyW7's avatar
myownskyW7 committed
7
import torch
Cao Yuhang's avatar
Cao Yuhang committed
8
import torch.distributed as dist
myownskyW7's avatar
myownskyW7 committed
9
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
Kai Chen's avatar
Kai Chen committed
10
11
from mmcv.runner import (DistSamplerSeedHook, Runner, get_dist_info,
                         obj_from_dict)
myownskyW7's avatar
myownskyW7 committed
12

13
from mmdet import datasets
14
15
16
from mmdet.core import (CocoDistEvalmAPHook, CocoDistEvalRecallHook,
                        DistEvalmAPHook, DistOptimizerHook, Fp16OptimizerHook)
from mmdet.datasets import DATASETS, build_dataloader
myownskyW7's avatar
myownskyW7 committed
17
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def get_root_logger(log_level=logging.INFO):
    logger = logging.getLogger()
    if not logger.hasHandlers():
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(message)s',
            level=log_level)
    rank, _ = get_dist_info()
    if rank != 0:
        logger.setLevel('ERROR')
    return logger
myownskyW7's avatar
myownskyW7 committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
Cao Yuhang's avatar
Cao Yuhang committed
53
54
55
56
57
58
    for loss_name, loss_value in log_vars.items():
        # reduce loss when distributed training
        if dist.is_initialized():
            loss_value = loss_value.data.clone()
            dist.all_reduce(loss_value.div_(dist.get_world_size()))
        log_vars[loss_name] = loss_value.item()
myownskyW7's avatar
myownskyW7 committed
59
60
61
62
63
64
65
66

    return loss, log_vars


def batch_processor(model, data, train_mode):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

67
68
    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
myownskyW7's avatar
myownskyW7 committed
69
70
71
72

    return outputs


Kai Chen's avatar
Kai Chen committed
73
74
75
76
77
78
79
80
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   logger=None):
    if logger is None:
        logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
81

Kai Chen's avatar
Kai Chen committed
82
83
84
    # start training
    if distributed:
        _dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
85
    else:
Kai Chen's avatar
Kai Chen committed
86
        _non_dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
87

Kai Chen's avatar
Kai Chen committed
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def build_optimizer(model, optimizer_cfg):
    """Build optimizer from configs.

    Args:
        model (:obj:`nn.Module`): The model with parameters to be optimized.
        optimizer_cfg (dict): The config dict of the optimizer.
            Positional fields are:
                - type: class name of the optimizer.
                - lr: base learning rate.
            Optional fields are:
                - any arguments of the corresponding optimizer type, e.g.,
                  weight_decay, momentum, etc.
                - paramwise_options: a dict with 3 accepted fileds
                  (bias_lr_mult, bias_decay_mult, norm_decay_mult).
                  `bias_lr_mult` and `bias_decay_mult` will be multiplied to
                  the lr and weight decay respectively for all bias parameters
                  (except for the normalization layers), and
                  `norm_decay_mult` will be multiplied to the weight decay
                  for all weight and bias parameters of normalization layers.

    Returns:
        torch.optim.Optimizer: The initialized optimizer.
111
112
113
114
115
116

    Example:
        >>> model = torch.nn.modules.Conv1d(1, 1, 1)
        >>> optimizer_cfg = dict(type='SGD', lr=0.01, momentum=0.9,
        >>>                      weight_decay=0.0001)
        >>> optimizer = build_optimizer(model, optimizer_cfg)
117
118
119
120
121
122
123
124
    """
    if hasattr(model, 'module'):
        model = model.module

    optimizer_cfg = optimizer_cfg.copy()
    paramwise_options = optimizer_cfg.pop('paramwise_options', None)
    # if no paramwise option is specified, just use the global setting
    if paramwise_options is None:
125
126
        return obj_from_dict(optimizer_cfg, torch.optim,
                             dict(params=model.parameters()))
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    else:
        assert isinstance(paramwise_options, dict)
        # get base lr and weight decay
        base_lr = optimizer_cfg['lr']
        base_wd = optimizer_cfg.get('weight_decay', None)
        # weight_decay must be explicitly specified if mult is specified
        if ('bias_decay_mult' in paramwise_options
                or 'norm_decay_mult' in paramwise_options):
            assert base_wd is not None
        # get param-wise options
        bias_lr_mult = paramwise_options.get('bias_lr_mult', 1.)
        bias_decay_mult = paramwise_options.get('bias_decay_mult', 1.)
        norm_decay_mult = paramwise_options.get('norm_decay_mult', 1.)
        # set param-wise lr and weight decay
        params = []
        for name, param in model.named_parameters():
Cao Yuhang's avatar
Cao Yuhang committed
143
            param_group = {'params': [param]}
144
            if not param.requires_grad:
Cao Yuhang's avatar
Cao Yuhang committed
145
146
147
148
                # FP16 training needs to copy gradient/weight between master
                # weight copy and model weight, it is convenient to keep all
                # parameters here to align with model.parameters()
                params.append(param_group)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
                continue

            # for norm layers, overwrite the weight decay of weight and bias
            # TODO: obtain the norm layer prefixes dynamically
            if re.search(r'(bn|gn)(\d+)?.(weight|bias)', name):
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * norm_decay_mult
            # for other layers, overwrite both lr and weight decay of bias
            elif name.endswith('.bias'):
                param_group['lr'] = base_lr * bias_lr_mult
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * bias_decay_mult
            # otherwise use the global settings

            params.append(param_group)

        optimizer_cls = getattr(torch.optim, optimizer_cfg.pop('type'))
        return optimizer_cls(params, **optimizer_cfg)


Kai Chen's avatar
Kai Chen committed
169
def _dist_train(model, dataset, cfg, validate=False):
myownskyW7's avatar
myownskyW7 committed
170
    # prepare data loaders
171
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
myownskyW7's avatar
myownskyW7 committed
172
    data_loaders = [
173
        build_dataloader(
174
175
            ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
        for ds in dataset
myownskyW7's avatar
myownskyW7 committed
176
177
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
178
    model = MMDistributedDataParallel(model.cuda())
Cao Yuhang's avatar
Cao Yuhang committed
179

myownskyW7's avatar
myownskyW7 committed
180
    # build runner
181
182
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
myownskyW7's avatar
myownskyW7 committed
183
                    cfg.log_level)
Cao Yuhang's avatar
Cao Yuhang committed
184
185
186
187
188
189
190
191
192

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

myownskyW7's avatar
myownskyW7 committed
193
194
195
    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
196
197
198
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
199
        val_dataset_cfg = cfg.data.val
200
        eval_cfg = cfg.get('evaluation', {})
Kai Chen's avatar
Kai Chen committed
201
        if isinstance(model.module, RPN):
Kai Chen's avatar
Kai Chen committed
202
            # TODO: implement recall hooks for other datasets
203
204
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
205
        else:
206
            dataset_type = DATASETS.get(val_dataset_cfg.type)
207
            if issubclass(dataset_type, datasets.CocoDataset):
208
209
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
210
            else:
211
212
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
213
214
215
216
217
218
219
220
221

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model, dataset, cfg, validate=False):
222
223
224
225
226
    if validate:
        raise NotImplementedError('Built-in validation is not implemented '
                                  'yet in not-distributed training. Use '
                                  'distributed training or test.py and '
                                  '*eval.py scripts instead.')
Kai Chen's avatar
Kai Chen committed
227
    # prepare data loaders
228
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
Kai Chen's avatar
Kai Chen committed
229
    data_loaders = [
230
        build_dataloader(
231
            ds,
232
233
234
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
235
            dist=False) for ds in dataset
Kai Chen's avatar
Kai Chen committed
236
237
238
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
Cao Yuhang's avatar
Cao Yuhang committed
239

Kai Chen's avatar
Kai Chen committed
240
    # build runner
241
242
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
Kai Chen's avatar
Kai Chen committed
243
                    cfg.log_level)
Cao Yuhang's avatar
Cao Yuhang committed
244
245
246
247
248
249
250
251
    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=False)
    else:
        optimizer_config = cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
Kai Chen's avatar
Kai Chen committed
252
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
253
254
255
256
257

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
258
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)