Commit 4c1da636 authored by myownskyW7's avatar myownskyW7
Browse files

add high level api

parent d13997c3
from .train import train_detector
from .inference import inference_detector
__all__ = ['train_detector', 'inference_detector']
import mmcv
import numpy as np
import torch
from mmdet.datasets import to_tensor
from mmdet.datasets.transforms import ImageTransform
from mmdet.core import get_classes
def _prepare_data(img, img_transform, cfg, device):
ori_shape = img.shape
img, img_shape, pad_shape, scale_factor = img_transform(
img, scale=cfg.data.test.img_scale)
img = to_tensor(img).to(device).unsqueeze(0)
img_meta = [
dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=False)
]
return dict(img=[img], img_meta=[img_meta])
def inference_detector(model, imgs, cfg, device='cuda:0'):
imgs = imgs if isinstance(imgs, list) else [imgs]
img_transform = ImageTransform(
**cfg.img_norm_cfg, size_divisor=cfg.data.test.size_divisor)
model = model.to(device)
model.eval()
for img in imgs:
img = mmcv.imread(img)
data = _prepare_data(img, img_transform, cfg, device)
with torch.no_grad():
result = model(**data, return_loss=False, rescale=True)
yield result
def show_result(img, result, dataset='coco', score_thr=0.3):
class_names = get_classes(dataset)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(result)
]
labels = np.concatenate(labels)
bboxes = np.vstack(result)
mmcv.imshow_det_bboxes(
img.copy(),
bboxes,
labels,
class_names=class_names,
score_thr=score_thr)
from __future__ import division
import logging
import random
from collections import OrderedDict
import numpy as np
import torch
from mmcv.runner import Runner, DistSamplerSeedHook
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmdet import __version__
from mmdet.core import (init_dist, DistOptimizerHook, CocoDistEvalRecallHook,
CocoDistEvalmAPHook)
from mmdet.datasets import build_dataloader
from mmdet.models import RPN
def parse_losses(losses):
log_vars = OrderedDict()
for loss_name, loss_value in losses.items():
if isinstance(loss_value, torch.Tensor):
log_vars[loss_name] = loss_value.mean()
elif isinstance(loss_value, list):
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
else:
raise TypeError(
'{} is not a tensor or list of tensors'.format(loss_name))
loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)
log_vars['loss'] = loss
for name in log_vars:
log_vars[name] = log_vars[name].item()
return loss, log_vars
def batch_processor(model, data, train_mode):
losses = model(**data)
loss, log_vars = parse_losses(losses)
outputs = dict(
loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
return outputs
def get_logger(log_level):
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=log_level)
logger = logging.getLogger()
return logger
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def train_detector(model, dataset, cfg):
# save mmdet version in checkpoint as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__, config=cfg.text)
logger = get_logger(cfg.log_level)
# set random seed if specified
if cfg.seed is not None:
logger.info('Set random seed to {}'.format(cfg.seed))
set_random_seed(cfg.seed)
# init distributed environment if necessary
if cfg.launcher == 'none':
dist = False
logger.info('Non-distributed training.')
else:
dist = True
init_dist(cfg.launcher, **cfg.dist_params)
if torch.distributed.get_rank() != 0:
logger.setLevel('ERROR')
logger.info('Distributed training.')
# prepare data loaders
data_loaders = [
build_dataloader(dataset, cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu, cfg.gpus, dist)
]
# put model on gpus
if dist:
model = MMDistributedDataParallel(model.cuda())
else:
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
cfg.log_level)
# register hooks
optimizer_config = DistOptimizerHook(
**cfg.optimizer_config) if dist else cfg.optimizer_config
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if dist:
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if cfg.validate:
if isinstance(model.module, RPN):
runner.register_hook(CocoDistEvalRecallHook(cfg.data.val))
elif cfg.data.val.type == 'CocoDataset':
runner.register_hook(CocoDistEvalmAPHook(cfg.data.val))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
\ No newline at end of file
from __future__ import division
import argparse
import logging
import random
from collections import OrderedDict
import numpy as np
import torch
from mmcv import Config
from mmcv.runner import Runner, obj_from_dict, DistSamplerSeedHook
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmdet import datasets, __version__
from mmdet.core import (init_dist, DistOptimizerHook, CocoDistEvalRecallHook,
CocoDistEvalmAPHook)
from mmdet.datasets import build_dataloader
from mmdet.models import build_detector, RPN
def parse_losses(losses):
log_vars = OrderedDict()
for loss_name, loss_value in losses.items():
if isinstance(loss_value, torch.Tensor):
log_vars[loss_name] = loss_value.mean()
elif isinstance(loss_value, list):
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
else:
raise TypeError(
'{} is not a tensor or list of tensors'.format(loss_name))
loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)
log_vars['loss'] = loss
for name in log_vars:
log_vars[name] = log_vars[name].item()
return loss, log_vars
def batch_processor(model, data, train_mode):
losses = model(**data)
loss, log_vars = parse_losses(losses)
outputs = dict(
loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
return outputs
def get_logger(log_level):
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=log_level)
logger = logging.getLogger()
return logger
from mmcv.runner import obj_from_dict
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
from mmdet import datasets
from mmdet.api import train_detector
from mmdet.models import build_detector
def parse_args():
......@@ -86,71 +33,19 @@ def parse_args():
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.work_dir is not None:
cfg.work_dir = args.work_dir
cfg.validate = args.validate
cfg.gpus = args.gpus
# save mmdet version in checkpoint as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__, config=cfg.text)
logger = get_logger(cfg.log_level)
# set random seed if specified
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
# init distributed environment if necessary
if args.launcher == 'none':
dist = False
logger.info('Non-distributed training.')
else:
dist = True
init_dist(args.launcher, **cfg.dist_params)
if torch.distributed.get_rank() != 0:
logger.setLevel('ERROR')
logger.info('Distributed training.')
# prepare data loaders
train_dataset = obj_from_dict(cfg.data.train, datasets)
data_loaders = [
build_dataloader(train_dataset, cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu, cfg.gpus, dist)
]
cfg.seed = args.seed
cfg.launcher = args.launcher
cfg.local_rank = args.local_rank
# build model
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
if dist:
model = MMDistributedDataParallel(model.cuda())
else:
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
cfg.log_level)
# register hooks
optimizer_config = DistOptimizerHook(
**cfg.optimizer_config) if dist else cfg.optimizer_config
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if dist:
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if args.validate:
if isinstance(model.module, RPN):
runner.register_hook(CocoDistEvalRecallHook(cfg.data.val))
elif cfg.data.val.type == 'CocoDataset':
runner.register_hook(CocoDistEvalmAPHook(cfg.data.val))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
train_dataset = obj_from_dict(cfg.data.train, datasets)
train_detector(model, train_dataset, cfg)
if __name__ == '__main__':
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment