train.py 8.19 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
2
from __future__ import division

3
import re
myownskyW7's avatar
myownskyW7 committed
4
5
6
from collections import OrderedDict

import torch
7
from mmcv.runner import Runner, DistSamplerSeedHook, obj_from_dict
myownskyW7's avatar
myownskyW7 committed
8
9
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel

10
from mmdet import datasets
Kai Chen's avatar
Kai Chen committed
11
from mmdet.core import (DistOptimizerHook, DistEvalmAPHook,
Cao Yuhang's avatar
Cao Yuhang committed
12
13
                        CocoDistEvalRecallHook, CocoDistEvalmAPHook,
                        Fp16OptimizerHook)
myownskyW7's avatar
myownskyW7 committed
14
15
from mmdet.datasets import build_dataloader
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
16
from .env import get_root_logger
myownskyW7's avatar
myownskyW7 committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
    for name in log_vars:
        log_vars[name] = log_vars[name].item()

    return loss, log_vars


def batch_processor(model, data, train_mode):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

43
44
    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
myownskyW7's avatar
myownskyW7 committed
45
46
47
48

    return outputs


Kai Chen's avatar
Kai Chen committed
49
50
51
52
53
54
55
56
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   logger=None):
    if logger is None:
        logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
57

Kai Chen's avatar
Kai Chen committed
58
59
60
    # start training
    if distributed:
        _dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
61
    else:
Kai Chen's avatar
Kai Chen committed
62
        _non_dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
63

Kai Chen's avatar
Kai Chen committed
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def build_optimizer(model, optimizer_cfg):
    """Build optimizer from configs.

    Args:
        model (:obj:`nn.Module`): The model with parameters to be optimized.
        optimizer_cfg (dict): The config dict of the optimizer.
            Positional fields are:
                - type: class name of the optimizer.
                - lr: base learning rate.
            Optional fields are:
                - any arguments of the corresponding optimizer type, e.g.,
                  weight_decay, momentum, etc.
                - paramwise_options: a dict with 3 accepted fileds
                  (bias_lr_mult, bias_decay_mult, norm_decay_mult).
                  `bias_lr_mult` and `bias_decay_mult` will be multiplied to
                  the lr and weight decay respectively for all bias parameters
                  (except for the normalization layers), and
                  `norm_decay_mult` will be multiplied to the weight decay
                  for all weight and bias parameters of normalization layers.

    Returns:
        torch.optim.Optimizer: The initialized optimizer.
    """
    if hasattr(model, 'module'):
        model = model.module

    optimizer_cfg = optimizer_cfg.copy()
    paramwise_options = optimizer_cfg.pop('paramwise_options', None)
    # if no paramwise option is specified, just use the global setting
    if paramwise_options is None:
95
96
        return obj_from_dict(optimizer_cfg, torch.optim,
                             dict(params=model.parameters()))
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    else:
        assert isinstance(paramwise_options, dict)
        # get base lr and weight decay
        base_lr = optimizer_cfg['lr']
        base_wd = optimizer_cfg.get('weight_decay', None)
        # weight_decay must be explicitly specified if mult is specified
        if ('bias_decay_mult' in paramwise_options
                or 'norm_decay_mult' in paramwise_options):
            assert base_wd is not None
        # get param-wise options
        bias_lr_mult = paramwise_options.get('bias_lr_mult', 1.)
        bias_decay_mult = paramwise_options.get('bias_decay_mult', 1.)
        norm_decay_mult = paramwise_options.get('norm_decay_mult', 1.)
        # set param-wise lr and weight decay
        params = []
        for name, param in model.named_parameters():
Cao Yuhang's avatar
Cao Yuhang committed
113
            param_group = {'params': [param]}
114
            if not param.requires_grad:
Cao Yuhang's avatar
Cao Yuhang committed
115
116
117
118
                # FP16 training needs to copy gradient/weight between master
                # weight copy and model weight, it is convenient to keep all
                # parameters here to align with model.parameters()
                params.append(param_group)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
                continue

            # for norm layers, overwrite the weight decay of weight and bias
            # TODO: obtain the norm layer prefixes dynamically
            if re.search(r'(bn|gn)(\d+)?.(weight|bias)', name):
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * norm_decay_mult
            # for other layers, overwrite both lr and weight decay of bias
            elif name.endswith('.bias'):
                param_group['lr'] = base_lr * bias_lr_mult
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * bias_decay_mult
            # otherwise use the global settings

            params.append(param_group)

        optimizer_cls = getattr(torch.optim, optimizer_cfg.pop('type'))
        return optimizer_cls(params, **optimizer_cfg)


Kai Chen's avatar
Kai Chen committed
139
def _dist_train(model, dataset, cfg, validate=False):
myownskyW7's avatar
myownskyW7 committed
140
141
    # prepare data loaders
    data_loaders = [
142
143
144
145
146
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True)
myownskyW7's avatar
myownskyW7 committed
147
148
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
149
    model = MMDistributedDataParallel(model.cuda())
Cao Yuhang's avatar
Cao Yuhang committed
150

myownskyW7's avatar
myownskyW7 committed
151
    # build runner
152
153
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
myownskyW7's avatar
myownskyW7 committed
154
                    cfg.log_level)
Cao Yuhang's avatar
Cao Yuhang committed
155
156
157
158
159
160
161
162
163

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

myownskyW7's avatar
myownskyW7 committed
164
165
166
    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
167
168
169
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
170
        val_dataset_cfg = cfg.data.val
171
        eval_cfg = cfg.get('evaluation', {})
Kai Chen's avatar
Kai Chen committed
172
        if isinstance(model.module, RPN):
Kai Chen's avatar
Kai Chen committed
173
            # TODO: implement recall hooks for other datasets
174
175
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
176
        else:
177
178
            dataset_type = getattr(datasets, val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
179
180
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
181
            else:
182
183
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
184
185
186
187
188
189
190
191
192
193
194

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    data_loaders = [
195
196
197
198
199
200
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
            dist=False)
Kai Chen's avatar
Kai Chen committed
201
202
203
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
Cao Yuhang's avatar
Cao Yuhang committed
204

Kai Chen's avatar
Kai Chen committed
205
    # build runner
206
207
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
Kai Chen's avatar
Kai Chen committed
208
                    cfg.log_level)
Cao Yuhang's avatar
Cao Yuhang committed
209
210
211
212
213
214
215
216
    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=False)
    else:
        optimizer_config = cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
Kai Chen's avatar
Kai Chen committed
217
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
218
219
220
221
222

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
223
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)