train.py 9.11 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
from __future__ import division
2
import re
myownskyW7's avatar
myownskyW7 committed
3
4
5
from collections import OrderedDict

import torch
Cao Yuhang's avatar
Cao Yuhang committed
6
import torch.distributed as dist
myownskyW7's avatar
myownskyW7 committed
7
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
8
from mmcv.runner import DistSamplerSeedHook, Runner, obj_from_dict
myownskyW7's avatar
myownskyW7 committed
9

10
from mmdet import datasets
11
12
13
from mmdet.core import (CocoDistEvalmAPHook, CocoDistEvalRecallHook,
                        DistEvalmAPHook, DistOptimizerHook, Fp16OptimizerHook)
from mmdet.datasets import DATASETS, build_dataloader
myownskyW7's avatar
myownskyW7 committed
14
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
15
from .env import get_root_logger
myownskyW7's avatar
myownskyW7 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
Cao Yuhang's avatar
Cao Yuhang committed
32
33
34
35
36
37
    for loss_name, loss_value in log_vars.items():
        # reduce loss when distributed training
        if dist.is_initialized():
            loss_value = loss_value.data.clone()
            dist.all_reduce(loss_value.div_(dist.get_world_size()))
        log_vars[loss_name] = loss_value.item()
myownskyW7's avatar
myownskyW7 committed
38
39
40
41
42
43
44
45

    return loss, log_vars


def batch_processor(model, data, train_mode):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

46
47
    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
myownskyW7's avatar
myownskyW7 committed
48
49
50
51

    return outputs


Kai Chen's avatar
Kai Chen committed
52
53
54
55
56
57
58
59
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   logger=None):
    if logger is None:
        logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
60

Kai Chen's avatar
Kai Chen committed
61
62
63
    # start training
    if distributed:
        _dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
64
    else:
Kai Chen's avatar
Kai Chen committed
65
        _non_dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
66

Kai Chen's avatar
Kai Chen committed
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def build_optimizer(model, optimizer_cfg):
    """Build optimizer from configs.

    Args:
        model (:obj:`nn.Module`): The model with parameters to be optimized.
        optimizer_cfg (dict): The config dict of the optimizer.
            Positional fields are:
                - type: class name of the optimizer.
                - lr: base learning rate.
            Optional fields are:
                - any arguments of the corresponding optimizer type, e.g.,
                  weight_decay, momentum, etc.
                - paramwise_options: a dict with 3 accepted fileds
                  (bias_lr_mult, bias_decay_mult, norm_decay_mult).
                  `bias_lr_mult` and `bias_decay_mult` will be multiplied to
                  the lr and weight decay respectively for all bias parameters
                  (except for the normalization layers), and
                  `norm_decay_mult` will be multiplied to the weight decay
                  for all weight and bias parameters of normalization layers.

    Returns:
        torch.optim.Optimizer: The initialized optimizer.
90
91
92
93
94
95

    Example:
        >>> model = torch.nn.modules.Conv1d(1, 1, 1)
        >>> optimizer_cfg = dict(type='SGD', lr=0.01, momentum=0.9,
        >>>                      weight_decay=0.0001)
        >>> optimizer = build_optimizer(model, optimizer_cfg)
96
97
98
99
100
101
102
103
    """
    if hasattr(model, 'module'):
        model = model.module

    optimizer_cfg = optimizer_cfg.copy()
    paramwise_options = optimizer_cfg.pop('paramwise_options', None)
    # if no paramwise option is specified, just use the global setting
    if paramwise_options is None:
104
105
        return obj_from_dict(optimizer_cfg, torch.optim,
                             dict(params=model.parameters()))
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    else:
        assert isinstance(paramwise_options, dict)
        # get base lr and weight decay
        base_lr = optimizer_cfg['lr']
        base_wd = optimizer_cfg.get('weight_decay', None)
        # weight_decay must be explicitly specified if mult is specified
        if ('bias_decay_mult' in paramwise_options
                or 'norm_decay_mult' in paramwise_options):
            assert base_wd is not None
        # get param-wise options
        bias_lr_mult = paramwise_options.get('bias_lr_mult', 1.)
        bias_decay_mult = paramwise_options.get('bias_decay_mult', 1.)
        norm_decay_mult = paramwise_options.get('norm_decay_mult', 1.)
        # set param-wise lr and weight decay
        params = []
        for name, param in model.named_parameters():
Cao Yuhang's avatar
Cao Yuhang committed
122
            param_group = {'params': [param]}
123
            if not param.requires_grad:
Cao Yuhang's avatar
Cao Yuhang committed
124
125
126
127
                # FP16 training needs to copy gradient/weight between master
                # weight copy and model weight, it is convenient to keep all
                # parameters here to align with model.parameters()
                params.append(param_group)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                continue

            # for norm layers, overwrite the weight decay of weight and bias
            # TODO: obtain the norm layer prefixes dynamically
            if re.search(r'(bn|gn)(\d+)?.(weight|bias)', name):
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * norm_decay_mult
            # for other layers, overwrite both lr and weight decay of bias
            elif name.endswith('.bias'):
                param_group['lr'] = base_lr * bias_lr_mult
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * bias_decay_mult
            # otherwise use the global settings

            params.append(param_group)

        optimizer_cls = getattr(torch.optim, optimizer_cfg.pop('type'))
        return optimizer_cls(params, **optimizer_cfg)


Kai Chen's avatar
Kai Chen committed
148
def _dist_train(model, dataset, cfg, validate=False):
myownskyW7's avatar
myownskyW7 committed
149
    # prepare data loaders
150
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
myownskyW7's avatar
myownskyW7 committed
151
    data_loaders = [
152
        build_dataloader(
153
154
            ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
        for ds in dataset
myownskyW7's avatar
myownskyW7 committed
155
156
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
157
    model = MMDistributedDataParallel(model.cuda())
Cao Yuhang's avatar
Cao Yuhang committed
158

myownskyW7's avatar
myownskyW7 committed
159
    # build runner
160
161
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
myownskyW7's avatar
myownskyW7 committed
162
                    cfg.log_level)
Cao Yuhang's avatar
Cao Yuhang committed
163
164
165
166
167
168
169
170
171

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

myownskyW7's avatar
myownskyW7 committed
172
173
174
    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
175
176
177
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
178
        val_dataset_cfg = cfg.data.val
179
        eval_cfg = cfg.get('evaluation', {})
Kai Chen's avatar
Kai Chen committed
180
        if isinstance(model.module, RPN):
Kai Chen's avatar
Kai Chen committed
181
            # TODO: implement recall hooks for other datasets
182
183
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
184
        else:
185
            dataset_type = DATASETS.get(val_dataset_cfg.type)
186
            if issubclass(dataset_type, datasets.CocoDataset):
187
188
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
189
            else:
190
191
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
192
193
194
195
196
197
198
199
200

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model, dataset, cfg, validate=False):
201
202
203
204
205
    if validate:
        raise NotImplementedError('Built-in validation is not implemented '
                                  'yet in not-distributed training. Use '
                                  'distributed training or test.py and '
                                  '*eval.py scripts instead.')
Kai Chen's avatar
Kai Chen committed
206
    # prepare data loaders
207
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
Kai Chen's avatar
Kai Chen committed
208
    data_loaders = [
209
        build_dataloader(
210
            ds,
211
212
213
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
214
            dist=False) for ds in dataset
Kai Chen's avatar
Kai Chen committed
215
216
217
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
Cao Yuhang's avatar
Cao Yuhang committed
218

Kai Chen's avatar
Kai Chen committed
219
    # build runner
220
221
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
Kai Chen's avatar
Kai Chen committed
222
                    cfg.log_level)
Cao Yuhang's avatar
Cao Yuhang committed
223
224
225
226
227
228
229
230
    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=False)
    else:
        optimizer_config = cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
Kai Chen's avatar
Kai Chen committed
231
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
232
233
234
235
236

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
237
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)