MODEL_ZOO.md 35.9 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

Kai Chen's avatar
Kai Chen committed
12
- Python 3.6 / 3.7
Cao Yuhang's avatar
Cao Yuhang committed
13
- PyTorch Nightly
Kai Chen's avatar
Kai Chen committed
14
15
16
17
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15

Kai Chen's avatar
Kai Chen committed
18
19
20
## Mirror sites

We use AWS as the main site to host our model zoo, and maintain a mirror on aliyun.
Kai Chen's avatar
Kai Chen committed
21
You can replace `https://s3.ap-northeast-2.amazonaws.com/open-mmlab` with `https://open-mmlab.oss-cn-beijing.aliyuncs.com` in model urls.
Kai Chen's avatar
Kai Chen committed
22
23
24

## Common settings

myownskyW7's avatar
myownskyW7 committed
25
- All FPN baselines and RPN-C4 baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU). Other C4 baselines were trained using 8 GPU with a batch size of 8 (1 image per GPU).
Kai Chen's avatar
Kai Chen committed
26
27
28
29
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
30
31
- For fair comparison with other codebases, we report the GPU memory as the maximum value of `torch.cuda.max_memory_allocated()` for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows.
- We report the inference time as the overall time including data loading, network forwarding and post processing.
Kai Chen's avatar
Kai Chen committed
32
33
34
35


## Baselines

36
More models with different backbones will be added to the model zoo.
Kai Chen's avatar
Kai Chen committed
37
38
39

### RPN

myownskyW7's avatar
myownskyW7 committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 |                                                          Download                                                          |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      20.5      |  51.1  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_caffe_c4_1x-ea7d3428.pth)       |
|     R-50-C4     |  caffe  |   2x    |   2.2    |        0.17         |      20.3      |  52.2  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_caffe_c4_2x-c6d5b958.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      20.1      |  50.2  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_c4_1x-eb38972b.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      20.0      |  51.1  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_c4_2x-3d4c1e14.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.3    |        0.253        |      16.9      |  58.2  |                                                             -                                                              |
|    R-50-FPN     | pytorch |   1x    |   3.5    |        0.276        |      17.7      |  57.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  57.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.2    |        0.379        |      13.9      |  59.4  |                                                             -                                                              |
|    R-101-FPN    | pytorch |   1x    |   5.4    |        0.396        |      14.4      |  58.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  59.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.6    |        0.589        |      11.8      |  59.4  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_1x_20181218-7e379d26.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  59.9  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_2x_20181218-0510af40.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.5    |        0.955        |      8.3       |  59.8  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_1x_20181218-c1a24f1f.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  60.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_2x_20181218-c22bdd70.pth) |
Kai Chen's avatar
Kai Chen committed
56
57
58

### Faster R-CNN

myownskyW7's avatar
myownskyW7 committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                              Download                                                              |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :--------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      9.5       |  34.9  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_caffe_c4_1x-75ecfdfa.pth)       |
|     R-50-C4     |  caffe  |   2x    |   4.0    |        0.39         |      9.3       |  36.5  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_caffe_c4_2x-71c67f27.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      9.3       |  33.9  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_c4_1x-642cf91f.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      9.4       |  35.9  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_c4_2x-6e4fdf4f.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.6    |        0.333        |      13.5      |  36.6  |                                                                 -                                                                  |
|    R-50-FPN     | pytorch |   1x    |   3.8    |        0.353        |      13.6      |  36.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  37.7  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.5    |        0.465        |      11.5      |  38.8  |                                                                 -                                                                  |
|    R-101-FPN    | pytorch |   1x    |   5.7    |        0.474        |      11.9      |  38.5  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  39.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.9    |        0.672        |      10.3      |  40.1  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  40.4  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.8    |        1.040        |      7.3       |  41.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  40.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth) |
Kai Chen's avatar
Kai Chen committed
75
76
77

### Mask R-CNN

myownskyW7's avatar
myownskyW7 committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                             Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      8.1       |  35.9  |  31.5   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_caffe_c4_1x-02a4ad3b.pth)       |
|     R-50-C4     |  caffe  |   2x    |   4.2    |        0.43         |      8.1       |  37.9  |  32.9   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_caffe_c4_2x-d150973a.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      7.9       |  35.1  |  31.2   |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_c4_1x-a83bdd40.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      8.0       |  37.2  |  32.5   |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_c4_2x-3cf169a9.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.8    |        0.430        |      10.2      |  37.4  |  34.3   |                                                                -                                                                 |
|    R-50-FPN     | pytorch |   1x    |   3.9    |        0.453        |      10.6      |  37.3  |  34.2   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  38.5  |  35.1   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.7    |        0.534        |      9.4       |  39.9  |  36.1   |                                                                -                                                                 |
|    R-101-FPN    | pytorch |   1x    |   5.8    |        0.571        |      9.5       |  39.4  |  35.9   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  40.3  |  36.5   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   7.1    |        0.759        |      8.3       |  41.1  |  37.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  41.4  |  37.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   10.0   |        1.102        |      6.5       |  42.1  |  38.0   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  42.0  |  37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth) |
Kai Chen's avatar
Kai Chen committed
94

Kai Chen's avatar
Kai Chen committed
95
### Fast R-CNN (with pre-computed proposals)
Kai Chen's avatar
Kai Chen committed
96

myownskyW7's avatar
myownskyW7 committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
| Backbone  |  Style  |  Type  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                            Download                                                             |
| :-------: | :-----: | :----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :-----------------------------------------------------------------------------------------------------------------------------: |
|  R-50-C4  |  caffe  | Faster |   1x    |    -     |          -          |      6.7       |  35.0  |    -    |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_caffe_c4_1x-0ef9a60b.pth)      |
|  R-50-C4  |  caffe  | Faster |   2x    |   3.8    |        0.34         |      6.6       |  36.4  |    -    |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_c4_2x-657a9fc6.pth)         |
|  R-50-C4  | pytorch | Faster |   1x    |    -     |          -          |      6.3       |  34.2  |    -    |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_c4_1x-2bc00ca9.pth)         |
|  R-50-C4  | pytorch | Faster |   2x    |    -     |          -          |      6.1       |  35.8  |    -    |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_caffe_c4_2x-9171d0fc.pth)      |
| R-50-FPN  |  caffe  | Faster |   1x    |   3.3    |        0.242        |      18.4      |  36.6  |    -    |                                                                -                                                                |
| R-50-FPN  | pytorch | Faster |   1x    |   3.5    |        0.250        |      16.5      |  35.8  |    -    |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth)    |
|  R-50-C4  |  caffe  |  Mask  |   1x    |    -     |          -          |      8.1       |  35.9  |  31.5   |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_caffe_c4_1x-b43f7f3c.pth)    |
|  R-50-C4  |  caffe  |  Mask  |   2x    |   4.2    |        0.43         |      8.1       |  37.9  |  32.9   |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_caffe_c4_2x-e3580184.pth)    |
|  R-50-C4  | pytorch |  Mask  |   1x    |    -     |          -          |      7.9       |  35.1  |  31.2   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_c4_1x-bc7fa8c8.pth)       |
|  R-50-C4  | pytorch |  Mask  |   2x    |    -     |          -          |      8.0       |  37.2  |  32.5   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth)  |
| R-50-FPN  | pytorch | Faster |   2x    |    -     |          -          |       -        |  37.1  |    -    |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth)    |
| R-101-FPN |  caffe  | Faster |   1x    |   5.2    |        0.355        |      14.4      |  38.6  |    -    |                                                                -                                                                |
| R-101-FPN | pytorch | Faster |   1x    |   5.4    |        0.388        |      13.2      |  38.1  |    -    |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth)    |
| R-101-FPN | pytorch | Faster |   2x    |    -     |          -          |       -        |  38.8  |    -    |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth)    |
| R-50-FPN  |  caffe  |  Mask  |   1x    |   3.4    |        0.328        |      12.8      |  37.3  |  34.5   |                                                                -                                                                |
| R-50-FPN  | pytorch |  Mask  |   1x    |   3.5    |        0.346        |      12.7      |  36.8  |  34.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth)  |
| R-50-FPN  | pytorch |  Mask  |   2x    |    -     |          -          |       -        |  37.9  |  34.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth)  |
| R-101-FPN |  caffe  |  Mask  |   1x    |   5.2    |        0.429        |      11.2      |  39.4  |  36.1   |                                                                -                                                                |
| R-101-FPN | pytorch |  Mask  |   1x    |   5.4    |        0.462        |      10.9      |  38.9  |  35.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth) |
| R-101-FPN | pytorch |  Mask  |   2x    |    -     |          -          |       -        |  39.9  |  36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth) |
Kai Chen's avatar
Kai Chen committed
119

Kai Chen's avatar
Kai Chen committed
120
### RetinaNet
Kai Chen's avatar
Kai Chen committed
121

myownskyW7's avatar
myownskyW7 committed
122
123
124
125
126
127
128
129
130
131
132
133
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------------: |
|    R-50-FPN     |  caffe  |   1x    |   3.4    |        0.285        |      12.5      |  35.8  |                                                                -                                                                 |
|    R-50-FPN     | pytorch |   1x    |   3.6    |        0.308        |      12.1      |  35.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-7b0c2548.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  36.5  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_2x_20181125-8b724df2.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.3    |        0.410        |      10.4      |  37.8  |                                                                -                                                                 |
|    R-101-FPN    | pytorch |   1x    |   5.5    |        0.429        |      10.9      |  37.7  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f016f384.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  38.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-72c14526.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.7    |        0.632        |      9.3       |  39.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_1x_20190501-967812ba.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  39.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_2x_20181218-8596452d.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.6    |        0.993        |      7.0       |  40.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_1x_20181218-a0a22662.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  39.6  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_2x_20181218-5e88d045.pth) |
Kai Chen's avatar
Kai Chen committed
134

Kai Chen's avatar
Kai Chen committed
135
136
### Cascade R-CNN

myownskyW7's avatar
myownskyW7 committed
137
138
139
140
141
142
143
144
145
146
147
148
149
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                              Download                                                               |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :---------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |   8.7    |        0.92         |      5.0       |  38.7  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_caffe_c4_1x-7c85c62b.pth)       |
|    R-50-FPN     |  caffe  |   1x    |   3.9    |        0.464        |      10.9      |  40.5  |                                                                  -                                                                  |
|    R-50-FPN     | pytorch |   1x    |   4.1    |        0.455        |      11.9      |  40.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20190501-3b6211ab.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  41.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth)    |
|    R-101-FPN    |  caffe  |   1x    |   5.8    |        0.569        |      9.6       |  42.4  |                                                                  -                                                                  |
|    R-101-FPN    | pytorch |   1x    |   6.0    |        0.584        |      10.3      |  42.0  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth)    |
|    R-101-FPN    | pytorch |   20e   |    -     |          -          |       -        |  42.5  |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   7.2    |        0.770        |      8.9       |  43.6  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_20190501-af628be5.pth) |
| X-101-32x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   10.0   |        1.133        |      6.7       |  44.5  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth) |
| X-101-64x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth) |
Kai Chen's avatar
Kai Chen committed
150
151
152

### Cascade Mask R-CNN

myownskyW7's avatar
myownskyW7 committed
153
154
155
156
157
158
159
160
161
162
163
164
165
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                                 Download                                                                  |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :---------------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |   9.1    |        0.99         |      4.5       |  39.3  |  32.8   |       [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_caffe_c4_1x-f72cc254.pth)       |
|    R-50-FPN     |  caffe  |   1x    |   5.1    |        0.692        |      7.6       |  40.9  |  35.5   |                                                                     -                                                                     |
|    R-50-FPN     | pytorch |   1x    |   5.3    |        0.683        |      7.4       |  41.2  |  35.7   |     [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  42.3  |  36.6   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   7.0    |        0.803        |      7.2       |  43.1  |  37.2   |                                                                     -                                                                     |
|    R-101-FPN    | pytorch |   1x    |   7.2    |        0.807        |      6.8       |  42.6  |  37.0   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth)     |
|    R-101-FPN    | pytorch |   20e   |    -     |          -          |       -        |  43.3  |  37.6   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   8.4    |        0.976        |      6.6       |  44.4  |  38.2   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth)  |
| X-101-32x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.7  |  38.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   11.4   |        1.33         |      5.3       |  45.4  |  39.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_20190501-827e0a70.pth)  |
| X-101-64x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  45.7  |  39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth) |
Kai Chen's avatar
Kai Chen committed
166

pangjm's avatar
pangjm committed
167
168
**Notes:**

Kai Chen's avatar
Kai Chen committed
169
- The `20e` schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.
Kai Chen's avatar
Kai Chen committed
170

171
172
### Hybrid Task Cascade (HTC)

myownskyW7's avatar
myownskyW7 committed
173
174
175
176
177
178
179
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                            Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :-----------------------------------------------------------------------------------------------------------------------------: |
|    R-50-FPN     | pytorch |   1x    |   7.4    |        0.936        |      4.1       |  42.1  |  37.3   |     [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  43.2  |  38.1   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth)     |
|    R-101-FPN    | pytorch |   20e   |   9.3    |        1.051        |      4.0       |  44.9  |  39.4   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth)    |
| X-101-32x4d-FPN | pytorch |   20e   |   5.8    |        0.769        |      3.8       |  46.1  |  40.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth) |
| X-101-64x4d-FPN | pytorch |   20e   |   7.5    |        1.120        |      3.5       |  46.9  |  40.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth) |
Kai Chen's avatar
Kai Chen committed
180
181
182

**Notes:**

183
- Please refer to [Hybrid Task Cascade](configs/htc/README.md) for details and more a powerful model (50.7/43.9).
184

Kai Chen's avatar
Kai Chen committed
185
186
### SSD

myownskyW7's avatar
myownskyW7 committed
187
188
189
190
| Backbone | Size  | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                              |
| :------: | :---: | :---: | :-----: | :------: | :-----------------: | :------------: | :----: | :-------------------------------------------------------------------------------------------------------------------------------: |
|  VGG16   |  300  | caffe |  120e   |   3.5    |        0.256        |  25.9 / 34.6   |  25.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth) |
|  VGG16   |  512  | caffe |  120e   |   7.6    |        0.412        |  20.7 / 25.4   |  29.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth) |
Kai Chen's avatar
Kai Chen committed
191
192
193

### SSD (PASCAL VOC)

myownskyW7's avatar
myownskyW7 committed
194
195
196
197
| Backbone | Size  | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                             |
| :------: | :---: | :---: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------------: |
|  VGG16   |  300  | caffe |  240e   |   2.5    |        0.159        |  35.7 / 53.6   |  77.5  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_voc_vgg16_caffe_240e_20190501-7160d09a.pth) |
|  VGG16   |  512  | caffe |  240e   |   4.3    |        0.214        |  27.5 / 35.9   |  80.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_voc_vgg16_caffe_240e_20190501-ff194be1.pth) |
Kai Chen's avatar
Kai Chen committed
198
199
200
201
202
203
204

**Notes:**

- `cudnn.benchmark` is set as `True` for SSD training and testing.
- Inference time is reported for batch size = 1 and batch size = 8.
- The speed difference between VOC and COCO is caused by model parameters and nms.

Kai Chen's avatar
Kai Chen committed
205
206
### Group Normalization (GN)

Kai Chen's avatar
Kai Chen committed
207
Please refer to [Group Normalization](configs/gn/README.md) for details.
Kai Chen's avatar
Kai Chen committed
208

Kai Chen's avatar
Kai Chen committed
209
### Weight Standardization
Kai Chen's avatar
Kai Chen committed
210

Kai Chen's avatar
Kai Chen committed
211
Please refer to [Weight Standardization](configs/gn+ws/README.md) for details.
Kai Chen's avatar
Kai Chen committed
212

Kai Chen's avatar
Kai Chen committed
213
### Deformable Convolution v2
Kai Chen's avatar
Kai Chen committed
214

Kai Chen's avatar
Kai Chen committed
215
Please refer to [Deformable Convolutional Networks](configs/dcn/README.md) for details.
Kai Chen's avatar
Kai Chen committed
216

217
218
219
220
### Libra R-CNN

Please refer to [Libra R-CNN](configs/libra_rcnn/README.md) for details.

221
222
223
224
### Guided Anchoring

Please refer to [Guided Anchoring](configs/guided_anchoring/README.md) for details.

225
## Comparison with Detectron and maskrcnn-benchmark
Kai Chen's avatar
Kai Chen committed
226
227

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
228
and [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). The backbone used is R-50-FPN.
Kai Chen's avatar
Kai Chen committed
229

Kai Chen's avatar
Kai Chen committed
230
231
232
233
234
235
In general, mmdetection has 3 advantages over Detectron.

- **Higher performance** (especially in terms of mask AP)
- **Faster training speed**
- **Memory efficient**

Kai Chen's avatar
Kai Chen committed
236
237
### Performance

238
Detectron and maskrcnn-benchmark use caffe-style ResNet as the backbone.
Kai Chen's avatar
Kai Chen committed
239
240
241
242
243
We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

244
245
246
247
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

Kai Chen's avatar
Kai Chen committed
248
249
250
251
252
<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
253
    <th>maskrcnn-benchmark</th>
Kai Chen's avatar
Kai Chen committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
273
    <td>36.8</td>
274
    <td>36.4 / 36.6</td>
Kai Chen's avatar
Kai Chen committed
275
276
277
278
279
280
281
282
283
284
285
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
286
    <td>37.8 &amp; 34.2</td>
287
    <td>37.3 &amp; 34.2 / 37.4 &amp; 34.3</td>
Kai Chen's avatar
Kai Chen committed
288
289
290
291
292
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
293
    <td>38.5 &amp; 35.1 / -</td>
Kai Chen's avatar
Kai Chen committed
294
  </tr>
Kai Chen's avatar
Kai Chen committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  <tr>
    <td rowspan="2">Fast R-CNN</td>
    <td>1x</td>
    <td>36.4</td>
    <td>-</td>
    <td>35.8 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>36.8</td>
    <td>-</td>
    <td>37.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN (w/mask)</td>
    <td>1x</td>
    <td>37.3 &amp; 33.7</td>
    <td>-</td>
    <td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.7 &amp; 34.0</td>
    <td>-</td>
    <td>37.9 &amp; 34.8 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
321
322
</table>

Kai Chen's avatar
Kai Chen committed
323
### Training Speed
Kai Chen's avatar
Kai Chen committed
324

Kai Chen's avatar
Kai Chen committed
325
The training speed is measure with s/iter. The lower, the better.
Kai Chen's avatar
Kai Chen committed
326
327
328
329
330

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
331
332
    <th>maskrcnn-benchmark (V100)</th>
    <th>mmdetection (V100<sup>2</sup>)</th>
Kai Chen's avatar
Kai Chen committed
333
334
335
336
337
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
338
    <td>0.253</td>
Kai Chen's avatar
Kai Chen committed
339
340
341
342
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
343
344
    <td>0.353</td>
    <td>0.333</td>
Kai Chen's avatar
Kai Chen committed
345
346
347
348
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
349
350
    <td>0.454</td>
    <td>0.430</td>
Kai Chen's avatar
Kai Chen committed
351
  </tr>
Kai Chen's avatar
Kai Chen committed
352
353
354
355
  <tr>
    <td>Fast R-CNN</td>
    <td>0.285</td>
    <td>-</td>
356
    <td>0.242</td>
Kai Chen's avatar
Kai Chen committed
357
358
359
360
361
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>0.377</td>
    <td>-</td>
362
    <td>0.328</td>
Kai Chen's avatar
Kai Chen committed
363
  </tr>
Kai Chen's avatar
Kai Chen committed
364
365
</table>

366
\*1. Facebook's Big Basin servers (P100/V100) is slightly faster than the servers we use. mmdetection can also run slightly faster on FB's servers.
Kai Chen's avatar
Kai Chen committed
367

368
\*2. For fair comparison, we list the caffe-style results here.
Kai Chen's avatar
Kai Chen committed
369

Kai Chen's avatar
Kai Chen committed
370
371
372
373
374
375
376
377
378

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
379
380
    <th>maskrcnn-benchmark (V100)</th>
    <th>mmdetection (V100)</th>
Kai Chen's avatar
Kai Chen committed
381
382
383
384
385
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
386
    <td>16.9</td>
Kai Chen's avatar
Kai Chen committed
387
388
389
390
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
391
    <td>7.9</td>
392
    <td>13.5</td>
Kai Chen's avatar
Kai Chen committed
393
394
395
396
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
397
    <td>7.7</td>
398
    <td>10.2</td>
Kai Chen's avatar
Kai Chen committed
399
  </tr>
Kai Chen's avatar
Kai Chen committed
400
401
402
  <tr>
    <td>Fast R-CNN</td>
    <td>12.5</td>
403
404
    <td>-</td>
    <td>18.4</td>
Kai Chen's avatar
Kai Chen committed
405
406
407
408
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>9.9</td>
409
410
    <td>-</td>
    <td>12.8</td>
Kai Chen's avatar
Kai Chen committed
411
  </tr>
Kai Chen's avatar
Kai Chen committed
412
413
</table>

Kai Chen's avatar
Kai Chen committed
414
415
### Training memory

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
<table>
  <tr>
    <th>Type</th>
    <th>Detectron</th>
    <th>maskrcnn-benchmark</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>6.4</td>
    <td>-</td>
    <td>3.3</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>7.2</td>
    <td>4.4</td>
    <td>3.6</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.6</td>
    <td>5.2</td>
    <td>3.8</td>
  </tr>
  <tr>
    <td>Fast R-CNN</td>
    <td>6.0</td>
    <td>-</td>
    <td>3.3</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>7.9</td>
    <td>-</td>
    <td>3.4</td>
  </tr>
</table>

There is no doubt that maskrcnn-benchmark and mmdetection is more memory efficient than Detectron,
and the main advantage is PyTorch itself. We also perform some memory optimizations to push it forward.

Note that Caffe2 and PyTorch have different apis to obtain memory usage with different implementations.
For all codebases, `nvidia-smi` shows a larger memory usage than the reported number in the above table.