train.py 11.5 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
import logging
import random
3
import re
myownskyW7's avatar
myownskyW7 committed
4
5
from collections import OrderedDict

Kai Chen's avatar
Kai Chen committed
6
import numpy as np
myownskyW7's avatar
myownskyW7 committed
7
import torch
Cao Yuhang's avatar
Cao Yuhang committed
8
import torch.distributed as dist
myownskyW7's avatar
myownskyW7 committed
9
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
Kai Chen's avatar
Kai Chen committed
10
11
from mmcv.runner import (DistSamplerSeedHook, Runner, get_dist_info,
                         obj_from_dict)
myownskyW7's avatar
myownskyW7 committed
12

13
from mmdet import datasets
14
15
16
from mmdet.core import (CocoDistEvalmAPHook, CocoDistEvalRecallHook,
                        DistEvalmAPHook, DistOptimizerHook, Fp16OptimizerHook)
from mmdet.datasets import DATASETS, build_dataloader
myownskyW7's avatar
myownskyW7 committed
17
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
18
19


20
21
22
23
24
25
26
27
def get_root_logger(log_file=None, log_level=logging.INFO):
    logger = logging.getLogger('mmdet')
    # if the logger has been initialized, just return it
    if logger.hasHandlers():
        return logger

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(message)s', level=log_level)
Kai Chen's avatar
Kai Chen committed
28
29
30
    rank, _ = get_dist_info()
    if rank != 0:
        logger.setLevel('ERROR')
31
32
33
34
35
36
37
    elif log_file is not None:
        file_handler = logging.FileHandler(log_file, 'w')
        file_handler.setFormatter(
            logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
        file_handler.setLevel(log_level)
        logger.addHandler(file_handler)

Kai Chen's avatar
Kai Chen committed
38
    return logger
myownskyW7's avatar
myownskyW7 committed
39
40


Kai Chen's avatar
Kai Chen committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def set_random_seed(seed, deterministic=False):
    """Set random seed.

    Args:
        seed (int): Seed to be used.
        deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


myownskyW7's avatar
myownskyW7 committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
Cao Yuhang's avatar
Cao Yuhang committed
74
75
    for loss_name, loss_value in log_vars.items():
        # reduce loss when distributed training
76
        if dist.is_available() and dist.is_initialized():
Cao Yuhang's avatar
Cao Yuhang committed
77
78
79
            loss_value = loss_value.data.clone()
            dist.all_reduce(loss_value.div_(dist.get_world_size()))
        log_vars[loss_name] = loss_value.item()
myownskyW7's avatar
myownskyW7 committed
80
81
82
83
84

    return loss, log_vars


def batch_processor(model, data, train_mode):
Kai Chen's avatar
Kai Chen committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    """Process a data batch.

    This method is required as an argument of Runner, which defines how to
    process a data batch and obtain proper outputs. The first 3 arguments of
    batch_processor are fixed.

    Args:
        model (nn.Module): A PyTorch model.
        data (dict): The data batch in a dict.
        train_mode (bool): Training mode or not. It may be useless for some
            models.

    Returns:
        dict: A dict containing losses and log vars.
    """
myownskyW7's avatar
myownskyW7 committed
100
101
102
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

103
104
    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
myownskyW7's avatar
myownskyW7 committed
105
106
107
108

    return outputs


Kai Chen's avatar
Kai Chen committed
109
110
111
112
113
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
114
115
                   timestamp=None):
    logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
116

Kai Chen's avatar
Kai Chen committed
117
118
    # start training
    if distributed:
119
120
121
122
123
124
125
        _dist_train(
            model,
            dataset,
            cfg,
            validate=validate,
            logger=logger,
            timestamp=timestamp)
myownskyW7's avatar
myownskyW7 committed
126
    else:
127
128
129
130
131
132
133
        _non_dist_train(
            model,
            dataset,
            cfg,
            validate=validate,
            logger=logger,
            timestamp=timestamp)
myownskyW7's avatar
myownskyW7 committed
134

Kai Chen's avatar
Kai Chen committed
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def build_optimizer(model, optimizer_cfg):
    """Build optimizer from configs.

    Args:
        model (:obj:`nn.Module`): The model with parameters to be optimized.
        optimizer_cfg (dict): The config dict of the optimizer.
            Positional fields are:
                - type: class name of the optimizer.
                - lr: base learning rate.
            Optional fields are:
                - any arguments of the corresponding optimizer type, e.g.,
                  weight_decay, momentum, etc.
                - paramwise_options: a dict with 3 accepted fileds
                  (bias_lr_mult, bias_decay_mult, norm_decay_mult).
                  `bias_lr_mult` and `bias_decay_mult` will be multiplied to
                  the lr and weight decay respectively for all bias parameters
                  (except for the normalization layers), and
                  `norm_decay_mult` will be multiplied to the weight decay
                  for all weight and bias parameters of normalization layers.

    Returns:
        torch.optim.Optimizer: The initialized optimizer.
158
159
160
161
162
163

    Example:
        >>> model = torch.nn.modules.Conv1d(1, 1, 1)
        >>> optimizer_cfg = dict(type='SGD', lr=0.01, momentum=0.9,
        >>>                      weight_decay=0.0001)
        >>> optimizer = build_optimizer(model, optimizer_cfg)
164
165
166
167
168
169
170
171
    """
    if hasattr(model, 'module'):
        model = model.module

    optimizer_cfg = optimizer_cfg.copy()
    paramwise_options = optimizer_cfg.pop('paramwise_options', None)
    # if no paramwise option is specified, just use the global setting
    if paramwise_options is None:
172
173
        return obj_from_dict(optimizer_cfg, torch.optim,
                             dict(params=model.parameters()))
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    else:
        assert isinstance(paramwise_options, dict)
        # get base lr and weight decay
        base_lr = optimizer_cfg['lr']
        base_wd = optimizer_cfg.get('weight_decay', None)
        # weight_decay must be explicitly specified if mult is specified
        if ('bias_decay_mult' in paramwise_options
                or 'norm_decay_mult' in paramwise_options):
            assert base_wd is not None
        # get param-wise options
        bias_lr_mult = paramwise_options.get('bias_lr_mult', 1.)
        bias_decay_mult = paramwise_options.get('bias_decay_mult', 1.)
        norm_decay_mult = paramwise_options.get('norm_decay_mult', 1.)
        # set param-wise lr and weight decay
        params = []
        for name, param in model.named_parameters():
Cao Yuhang's avatar
Cao Yuhang committed
190
            param_group = {'params': [param]}
191
            if not param.requires_grad:
Cao Yuhang's avatar
Cao Yuhang committed
192
193
194
195
                # FP16 training needs to copy gradient/weight between master
                # weight copy and model weight, it is convenient to keep all
                # parameters here to align with model.parameters()
                params.append(param_group)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                continue

            # for norm layers, overwrite the weight decay of weight and bias
            # TODO: obtain the norm layer prefixes dynamically
            if re.search(r'(bn|gn)(\d+)?.(weight|bias)', name):
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * norm_decay_mult
            # for other layers, overwrite both lr and weight decay of bias
            elif name.endswith('.bias'):
                param_group['lr'] = base_lr * bias_lr_mult
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * bias_decay_mult
            # otherwise use the global settings

            params.append(param_group)

        optimizer_cls = getattr(torch.optim, optimizer_cfg.pop('type'))
        return optimizer_cls(params, **optimizer_cfg)


216
217
218
219
220
221
def _dist_train(model,
                dataset,
                cfg,
                validate=False,
                logger=None,
                timestamp=None):
myownskyW7's avatar
myownskyW7 committed
222
    # prepare data loaders
223
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
myownskyW7's avatar
myownskyW7 committed
224
    data_loaders = [
225
        build_dataloader(
226
227
            ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
        for ds in dataset
myownskyW7's avatar
myownskyW7 committed
228
229
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
230
    model = MMDistributedDataParallel(model.cuda())
Cao Yuhang's avatar
Cao Yuhang committed
231

myownskyW7's avatar
myownskyW7 committed
232
    # build runner
233
    optimizer = build_optimizer(model, cfg.optimizer)
234
235
236
237
    runner = Runner(
        model, batch_processor, optimizer, cfg.work_dir, logger=logger)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp
Cao Yuhang's avatar
Cao Yuhang committed
238
239
240
241
242
243
244
245
246

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

myownskyW7's avatar
myownskyW7 committed
247
248
249
    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
250
251
252
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
253
        val_dataset_cfg = cfg.data.val
254
        eval_cfg = cfg.get('evaluation', {})
Kai Chen's avatar
Kai Chen committed
255
        if isinstance(model.module, RPN):
Kai Chen's avatar
Kai Chen committed
256
            # TODO: implement recall hooks for other datasets
257
258
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
259
        else:
260
            dataset_type = DATASETS.get(val_dataset_cfg.type)
261
            if issubclass(dataset_type, datasets.CocoDataset):
262
263
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
264
            else:
265
266
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
Kai Chen's avatar
Kai Chen committed
267
268
269
270
271
272
273
274

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


275
276
277
278
279
280
def _non_dist_train(model,
                    dataset,
                    cfg,
                    validate=False,
                    logger=None,
                    timestamp=None):
281
282
283
284
285
    if validate:
        raise NotImplementedError('Built-in validation is not implemented '
                                  'yet in not-distributed training. Use '
                                  'distributed training or test.py and '
                                  '*eval.py scripts instead.')
Kai Chen's avatar
Kai Chen committed
286
    # prepare data loaders
287
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
Kai Chen's avatar
Kai Chen committed
288
    data_loaders = [
289
        build_dataloader(
290
            ds,
291
292
293
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
294
            dist=False) for ds in dataset
Kai Chen's avatar
Kai Chen committed
295
296
297
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
Cao Yuhang's avatar
Cao Yuhang committed
298

Kai Chen's avatar
Kai Chen committed
299
    # build runner
300
    optimizer = build_optimizer(model, cfg.optimizer)
301
302
303
304
    runner = Runner(
        model, batch_processor, optimizer, cfg.work_dir, logger=logger)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp
Cao Yuhang's avatar
Cao Yuhang committed
305
306
307
308
309
310
311
312
    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=False)
    else:
        optimizer_config = cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
Kai Chen's avatar
Kai Chen committed
313
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
314
315
316
317
318

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
319
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)