MODEL_ZOO.md 31 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

Kai Chen's avatar
Kai Chen committed
12
- Python 3.6 / 3.7
Kai Chen's avatar
Kai Chen committed
13
- PyTorch 1.0
Kai Chen's avatar
Kai Chen committed
14
15
16
17
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15

Kai Chen's avatar
Kai Chen committed
18
19
20
21
22
Note: The train time was measured with PyTorch 0.4.1. We will update it later, which should be about 0.02s ~ 0.05s faster.

## Mirror sites

We use AWS as the main site to host our model zoo, and maintain a mirror on aliyun.
Kai Chen's avatar
Kai Chen committed
23
You can replace `https://s3.ap-northeast-2.amazonaws.com/open-mmlab` with `https://open-mmlab.oss-cn-beijing.aliyuncs.com` in model urls.
Kai Chen's avatar
Kai Chen committed
24
25
26
27
28
29
30
31
32
33
34

## Common settings

- All baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU).
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
- We report the training GPU memory as the maximum value of `torch.cuda.max_memory_cached()`
for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows, but
closer to the actual requirements.
Kai Chen's avatar
Kai Chen committed
35
36
37
38
- We report the inference time as the overall time including data loading,
network forwarding and post processing.
- The training memory and time of 2x schedule is simply copied from 1x.
It should be very close to the actual memory and time.
Kai Chen's avatar
Kai Chen committed
39
40
41
42
43
44
45
46


## Baselines

We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More models with different backbones will be added to the model zoo.

### RPN

Kai Chen's avatar
Kai Chen committed
47
48
49
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 4.5      | 0.379               | 14.4           | 58.2   | -        |
Kai Chen's avatar
Kai Chen committed
50
51
52
53
54
| R-50-FPN | pytorch | 1x      | 4.8      | 0.407               | 14.5           | 57.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth) |
| R-50-FPN | pytorch | 2x      | 4.8      | 0.407               | 14.5           | 57.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth) |
| R-101-FPN | caffe   | 1x      | 7.4      | 0.513               | 11.1           | 59.4   | -        |
| R-101-FPN | pytorch | 1x      | 8.0      | 0.552               | 11.1           | 58.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth) |
| R-101-FPN | pytorch | 2x      | 8.0      | 0.552               | 11.1           | 59.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth) |
pangjm's avatar
pangjm committed
55
56
57
58
| X-101-32x4d-FPN | pytorch |1x | 9.9      | 0.691               | 8.3            | 59.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_1x_20181218-7e379d26.pth)
| X-101-32x4d-FPN | pytorch |2x | 9.9      | 0.691               | 8.3            | 59.9   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_2x_20181218-0510af40.pth)
| X-101-64x4d-FPN | pytorch |1x | 14.6     | 1.032               | 6.2            | 59.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_1x_20181218-c1a24f1f.pth)
| X-101-64x4d-FPN | pytorch |2x | 14.6     | 1.032               | 6.2            | 60.0   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_2x_20181218-c22bdd70.pth)
Kai Chen's avatar
Kai Chen committed
59
60
61

### Faster R-CNN

Kai Chen's avatar
Kai Chen committed
62
63
64
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 4.9      | 0.525               | 10.0           | 36.7   | -        |
Kai Chen's avatar
Kai Chen committed
65
66
67
68
69
| R-50-FPN | pytorch | 1x      | 5.1      | 0.554               | 9.9            | 36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth) |
| R-50-FPN | pytorch | 2x      | 5.1      | 0.554               | 9.9            | 37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth) |
| R-101-FPN | caffe   | 1x      | 7.4      | 0.663               | 8.4           | 38.8   | -        |
| R-101-FPN | pytorch | 1x      | 8.0      | 0.698               | 8.3           | 38.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth) |
| R-101-FPN | pytorch | 2x      | 8.0      | 0.698               | 8.3           | 39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth) |
pangjm's avatar
pangjm committed
70
71
72
73
| X-101-32x4d-FPN | pytorch | 1x| 9.9      | 0.842               | 7.0           | 40.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth)
| X-101-32x4d-FPN | pytorch | 2x| 9.9      | 0.842               | 7.0           | 40.5    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth)
| X-101-64x4d-FPN | pytorch | 1x| 14.1     | 1.181               | 5.2           | 41.3    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth)
| X-101-64x4d-FPN | pytorch | 2x| 14.1     | 1.181               | 5.2           | 40.7    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth)
Kai Chen's avatar
Kai Chen committed
74
75
76

### Mask R-CNN

Kai Chen's avatar
Kai Chen committed
77
78
79
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe   | 1x      | 5.9      | 0.658               | 7.7            | 37.5   | 34.4    | -        |
Kai Chen's avatar
Kai Chen committed
80
81
82
83
84
| R-50-FPN | pytorch | 1x      | 5.8      | 0.690               | 7.7            | 37.3   | 34.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth) |
| R-50-FPN | pytorch | 2x      | 5.8      | 0.690               | 7.7            | 38.6   | 35.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth) |
| R-101-FPN | caffe   | 1x      | 8.8      | 0.791               | 7.0            | 39.9   | 36.1    | -        |
| R-101-FPN | pytorch | 1x      | 9.1      | 0.825               | 6.7            | 39.4   | 35.9    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth) |
| R-101-FPN | pytorch | 2x      | 9.1      | 0.825               | 6.7            | 40.4   | 36.6    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth) |
pangjm's avatar
pangjm committed
85
86
87
88
| X-101-32x4d-FPN | pytorch | 1x| 10.9     | 0.972               | 5.8            | 41.2   | 37.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth)
| X-101-64x4d-FPN | pytorch | 2x| 10.9     | 0.972               | 5.8            | 41.4   | 37.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth)
| X-101-32x4d-FPN | pytorch | 1x| 14.1     | 1.302               | 4.7            | 42.2   | 38.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth)
| X-101-64x4d-FPN | pytorch | 2x| 14.1     | 1.302               | 4.7            | 42.0   | 37.8    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth)
Kai Chen's avatar
Kai Chen committed
89

Kai Chen's avatar
Kai Chen committed
90
### Fast R-CNN (with pre-computed proposals)
Kai Chen's avatar
Kai Chen committed
91

Kai Chen's avatar
Kai Chen committed
92
93
| Backbone | Style   | Type   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
Kai Chen's avatar
Kai Chen committed
94
95
96
97
98
99
100
101
102
103
104
105
| R-50-FPN | caffe   | Faster | 1x      | 3.5      | 0.348               | 14.6           | 36.6   | -       | -        |
| R-50-FPN | pytorch | Faster | 1x      | 4.0      | 0.375               | 14.5           | 35.8   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth) |
| R-50-FPN | pytorch | Faster | 2x      | 4.0      | 0.375               | 14.5           | 37.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth) |
| R-101-FPN| caffe   | Faster | 1x      | 7.1      | 0.484               | 11.9           | 38.4   | -       | -        |
| R-101-FPN| pytorch | Faster | 1x      | 7.6      | 0.540               | 11.8           | 38.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth) |
| R-101-FPN| pytorch | Faster | 2x      | 7.6      | 0.540               | 11.8           | 38.8   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth) |
| R-50-FPN | caffe   | Mask   | 1x      | 5.4      | 0.473               | 10.7           | 37.3   | 34.5    | -        |
| R-50-FPN | pytorch | Mask   | 1x      | 5.3      | 0.504               | 10.6           | 36.8   | 34.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth) |
| R-50-FPN | pytorch | Mask   | 2x      | 5.3      | 0.504               | 10.6           | 37.9   | 34.8    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth) |
| R-101-FPN| caffe   | Mask   | 1x      | 8.6      | 0.607               | 9.5            | 39.4   | 36.1    | -        |
| R-101-FPN| pytorch | Mask   | 1x      | 9.0      | 0.656               | 9.3            | 38.9   | 35.8    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth) |
| R-101-FPN| pytorch | Mask   | 2x      | 9.0      | 0.656               | 9.3            | 39.9   | 36.4    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth) |
Kai Chen's avatar
Kai Chen committed
106

Kai Chen's avatar
Kai Chen committed
107
### RetinaNet
Kai Chen's avatar
Kai Chen committed
108

Kai Chen's avatar
Kai Chen committed
109
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
Kai Chen's avatar
Kai Chen committed
110
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
Kai Chen's avatar
Kai Chen committed
111
112
113
| R-50-FPN | caffe   | 1x      | 6.7      | 0.468               | 9.4            | 35.8   | -        |
| R-50-FPN | pytorch | 1x      | 6.9      | 0.496               | 9.1            | 35.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-3d3c2142.pth) |
| R-50-FPN | pytorch | 2x      | 6.9      | 0.496               | 9.1            | 36.5   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_2x_20181125-e0dbec97.pth) |
Kai Chen's avatar
Kai Chen committed
114
115
116
| R-101-FPN | caffe   | 1x      | 9.2      | 0.614               | 8.2            | 37.8   | -        |
| R-101-FPN | pytorch | 1x      | 9.6      | 0.643               | 8.1            | 37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f738a02f.pth) |
| R-101-FPN | pytorch | 2x      | 9.6      | 0.643               | 8.1            | 38.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-f654534b.pth) |
pangjm's avatar
pangjm committed
117
118
119
120
| X-101-32x4d-FPN | pytorch | 1x| 10.8     | 0.792               | 6.7            | 38.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_1x_20181218-c140fb82.pth)
| X-101-32x4d-FPN | pytorch | 2x| 10.8     | 0.792               | 6.7            | 39.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_2x_20181218-605dcd0a.pth)
| X-101-64x4d-FPN | pytorch | 1x| 14.6     | 1.128               | 5.3            | 40.0   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_1x_20181218-2f6f778b.pth)
| X-101-64x4d-FPN | pytorch | 2x| 14.6     | 1.128               | 5.3            | 39.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_2x_20181218-2f598dc5.pth)
Kai Chen's avatar
Kai Chen committed
121

Kai Chen's avatar
Kai Chen committed
122
123
124
125
126
### Cascade R-CNN

| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 5.0      | 0.592               | 8.1            | 40.3   | -        |
Kai Chen's avatar
Kai Chen committed
127
128
| R-50-FPN | pytorch | 1x      | 5.5      | 0.622               | 8.0            | 40.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20181123-b1987c4a.pth) |
| R-50-FPN | pytorch | 20e     | 5.5      | 0.622               | 8.0            | 41.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth) |
Kai Chen's avatar
Kai Chen committed
129
130
131
| R-101-FPN | caffe   | 1x      | 8.5      | 0.731               | 7.0            | 42.2   | -        |
| R-101-FPN | pytorch | 1x      | 8.7      | 0.766               | 6.9            | 42.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth) |
| R-101-FPN | pytorch | 20e     | 8.7      | 0.766               | 6.9            | 42.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth) |
pangjm's avatar
pangjm committed
132
133
134
135
| X-101-32x4d-FPN | pytorch | 1x| 10.6     | 0.902               | 5.7            | 43.5   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_20181218-941c0925.pth)
| X-101-32x4d-FPN | pytorch |20e| 10.6     | 0.902               | 5.7            | 44.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth)
| X-101-64x4d-FPN | pytorch | 1x| 14.1     | 1.251               | 4.6            | 44.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth)
| X-101-64x4d-FPN | pytorch |20e| 14.1     | 1.251               | 4.6            | 44.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth)
Kai Chen's avatar
Kai Chen committed
136
137
138
139
140
141

### Cascade Mask R-CNN

| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe   | 1x      | 7.5      | 0.880               | 5.8            | 41.0   | 35.6    | -        |
Kai Chen's avatar
Kai Chen committed
142
143
| R-50-FPN | pytorch | 1x      | 7.6      | 0.910               | 5.7            | 41.3   | 35.7    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth) |
| R-50-FPN | pytorch | 20e     | 7.6      | 0.910               | 5.7            | 42.4   | 36.6    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth) |
Kai Chen's avatar
Kai Chen committed
144
145
146
| R-101-FPN | caffe   | 1x      | 10.5     | 1.024               | 5.3            | 43.1   | 37.3    | -        |
| R-101-FPN | pytorch | 1x      | 10.9     | 1.055               | 5.2            | 42.7   | 37.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth) |
| R-101-FPN | pytorch | 20e     | 10.9     | 1.055               | 5.2            | 43.4   | 37.6    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth) |
pangjm's avatar
pangjm committed
147
148
149
150
| X-101-32x4d-FPN | pytorch | 1x| 12.67    | 1.181               | 4.2            | 44.4   | 38.3    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth)
| X-101-32x4d-FPN | pytorch |20e| 12.67    | 1.181               | 4.2            | 44.9   | 38.7    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth)
| X-101-64x4d-FPN | pytorch | 1x| 10.87    | 1.125               | 3.6            | 45.5   | 39.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_20181218-85953a91.pth)
| X-101-64x4d-FPN | pytorch |20e| 10.87    | 1.125               | 3.6            | 45.8   | 39.5    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth)
Kai Chen's avatar
Kai Chen committed
151

pangjm's avatar
pangjm committed
152
153
**Notes:**

Kai Chen's avatar
Kai Chen committed
154
- The `20e` schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.
pangjm's avatar
pangjm committed
155
- Cascade Mask R-CNN with X-101-64x4d-FPN was trained using 16 GPU with a batch size of 16 (1 images per GPU).
Kai Chen's avatar
Kai Chen committed
156

157
158
159
160
### Hybrid Task Cascade (HTC)

Please refer to [HTC](configs/htc/README.md) for details.

Kai Chen's avatar
Kai Chen committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
### SSD

| Backbone | Size | Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:----:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| VGG16    | 300  | caffe  | 120e    | 3.5      | 0.286               | 22.9 / 29.2    | 25.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth)  |
| VGG16    | 512  | caffe  | 120e    | 6.3      | 0.458               | 17.3 / 21.2    | 29.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth) |

### SSD (PASCAL VOC)

| Backbone | Size | Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:----:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| VGG16    | 300  | caffe  | 240e    | 1.2      | 0.189               | 40.1 / 58.0    | 77.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_voc_vgg16_caffe_240e_20181221-2f05dd40.pth)  |
| VGG16    | 512  | caffe  | 240e    | 2.9      | 0.261               | 28.1 / 36.2    | 80.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_voc_vgg16_caffe_240e_20181221-7652ee18.pth) |

**Notes:**

- `cudnn.benchmark` is set as `True` for SSD training and testing.
- Inference time is reported for batch size = 1 and batch size = 8.
- The speed difference between VOC and COCO is caused by model parameters and nms.

Kai Chen's avatar
Kai Chen committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
### Group Normalization (GN)

| Backbone      | model      | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:-------------:|:----------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN (d)  | Mask R-CNN | 2x      | 7.2      | 0.806               | 5.4            | 39.9   | 36.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_2x_20180113-86832cf2.pth) |
| R-50-FPN (d)  | Mask R-CNN | 3x      | 7.2      | 0.806               | 5.4            | 40.2   | 36.5    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_3x_20180113-8e82f48d.pth) |
| R-101-FPN (d) | Mask R-CNN | 2x      | 9.9      | 0.970               | 4.8            | 41.6   | 37.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_2x_20180113-9598649c.pth) |
| R-101-FPN (d) | Mask R-CNN | 3x      | 9.9      | 0.970               | 4.8            | 41.7   | 37.3    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_3x_20180113-a14ffb96.pth) |
| R-50-FPN (c)  | Mask R-CNN | 2x      | 7.2      | 0.806               | 5.4            | 39.7   | 35.9    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_2x_20180113-ec93305c.pth) |
| R-50-FPN (c)  | Mask R-CNN | 3x      | 7.2      | 0.806               | 5.4            | 40.1   | 36.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_3x_20180113-9d230cab.pth) |

**Notes:**
- (d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by [@thangvubk](https://github.com/thangvubk).
- The `3x` schedule is epoch [28, 34, 36].
- The memory is measured with `torch.cuda.max_memory_allocated()` instead of `torch.cuda.max_memory_cached()`. We will update the memory usage of other models in the future.

Kai Chen's avatar
Kai Chen committed
197
198
199
200
201
202
203
204
205
### Deformable Convolution v2

| Backbone  | Model        | Style   | Conv          | Pool   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:------------:|:-------:|:-------------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN  | Faster       | pytorch | dconv(c3-c5)  | -      | 1x      | 3.9      | 0.594               | 10.2           | 40.0   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-e41688c9.pth) |
| R-50-FPN  | Faster       | pytorch | mdconv(c3-c5) | -      | 1x      | 3.7      | 0.598               | 10.0           | 40.3   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth) |
| R-50-FPN  | Faster       | pytorch | -             | dpool  | 1x      | 4.6      | 0.714               | 8.7            | 37.9   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth) |
| R-50-FPN  | Faster       | pytorch | -             | mdpool | 1x      | 5.2      | 0.769               | 8.2            | 38.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth) |
| R-101-FPN | Faster       | pytorch | dconv(c3-c5)  | -      | 1x      | 5.8      | 0.811               | 8.0            | 42.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-a7e31b65.pth) |
Kai Chen's avatar
Kai Chen committed
206
| X-101-32x4d-FPN | Faster       | pytorch | dconv(c3-c5)  | -      | 1x      | 7.1      | 1.126               | 6.6            | 43.5   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_x101_32x4d_fpn_1x_20190201-6d46376f.pth) |
Kai Chen's avatar
Kai Chen committed
207
208
209
210
211
212
213
214
215
216
217
218
219
| R-50-FPN  | Mask         | pytorch | dconv(c3-c5)  | -      | 1x      | 4.5      | 0.712               | 7.7            | 41.1   | 37.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-4f94ff79.pth) |
| R-50-FPN  | Mask         | pytorch | mdconv(c3-c5) | -      | 1x      | 4.5      | 0.712               | 7.7            | 41.4   | 37.4    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth) |
| R-101-FPN | Mask         | pytorch | dconv(c3-c5)  | -      | 1x      | 6.4      | 0.939               | 6.5            | 43.2   | 38.7    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-decb6db5.pth) |
| R-50-FPN  | Cascade      | pytorch | dconv(c3-c5)  | -      | 1x      | 4.4      | 0.660               | 7.6            | 44.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth) |
| R-101-FPN | Cascade      | pytorch | dconv(c3-c5)  | -      | 1x      | 6.3      | 0.881               | 6.8            | 45.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth) |
| R-50-FPN  | Cascade Mask | pytorch | dconv(c3-c5)  | -      | 1x      | 6.6      | 0.942               | 5.7            | 44.5   | 38.3    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth) |
| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5)  | -      | 1x      | 8.5      | 1.156               | 5.1            | 45.8   | 39.5    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth) |

**Notes:**

- `dconv` and `mdconv` denote (modulated) deformable convolution, `c3-c5` means adding dconv in resnet stage 3 to 5. `dpool` and `mdpool` denote (modulated) deformable roi pooling.
- The memory is measured with `torch.cuda.max_memory_allocated()`. The batch size is 16 (2 images per GPU).
- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
Kai Chen's avatar
Kai Chen committed
220

Kai Chen's avatar
Kai Chen committed
221
222
223
224
225
226
## Comparison with Detectron

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
and [Detectron.pytorch](https://github.com/roytseng-tw/Detectron.pytorch),
a third-party port of Detectron to Pytorch. The backbone used is R-50-FPN.

Kai Chen's avatar
Kai Chen committed
227
228
229
230
231
232
In general, mmdetection has 3 advantages over Detectron.

- **Higher performance** (especially in terms of mask AP)
- **Faster training speed**
- **Memory efficient**

Kai Chen's avatar
Kai Chen committed
233
234
235
### Performance

Detectron and Detectron.pytorch use caffe-style ResNet as the backbone.
Kai Chen's avatar
Kai Chen committed
236
In order to utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
Kai Chen's avatar
Kai Chen committed
237

Kai Chen's avatar
Kai Chen committed
238
In the meanwhile, we train models with caffe-style ResNet in 1x experiments for comparison.
Kai Chen's avatar
Kai Chen committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
    <th>Detectron.pytorch</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
    <td>37.1</td>
    <td>36.4 / 36.7</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
    <td>37.7 &amp; 33.7</td>
    <td>37.3 &amp; 34.2 / 37.5 &amp; 34.4</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
    <td>38.6 &amp; 35.1 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  <tr>
    <td rowspan="2">Fast R-CNN</td>
    <td>1x</td>
    <td>36.4</td>
    <td>-</td>
    <td>35.8 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>36.8</td>
    <td>-</td>
    <td>37.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN (w/mask)</td>
    <td>1x</td>
    <td>37.3 &amp; 33.7</td>
    <td>-</td>
    <td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.7 &amp; 34.0</td>
    <td>-</td>
    <td>37.9 &amp; 34.8 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
321
322
</table>

Kai Chen's avatar
Kai Chen committed
323
### Training Speed
Kai Chen's avatar
Kai Chen committed
324

Kai Chen's avatar
Kai Chen committed
325
The training speed is measure with s/iter. The lower, the better.
Kai Chen's avatar
Kai Chen committed
326
327
328
329
330
331

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
    <th>Detectron.pytorch (XP<sup>2</sup>)</th>
Kai Chen's avatar
Kai Chen committed
332
    <th>mmdetection<sup>3</sup> (V100<sup>4</sup> / XP)</th>
Kai Chen's avatar
Kai Chen committed
333
334
335
336
337
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
Kai Chen's avatar
Kai Chen committed
338
    <td>0.407 / 0.413</td>
Kai Chen's avatar
Kai Chen committed
339
340
341
342
343
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
    <td>1.015</td>
Kai Chen's avatar
Kai Chen committed
344
    <td>0.554 / 0.579</td>
Kai Chen's avatar
Kai Chen committed
345
346
347
348
349
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
    <td>1.435</td>
Kai Chen's avatar
Kai Chen committed
350
    <td>0.690 / 0.732</td>
Kai Chen's avatar
Kai Chen committed
351
  </tr>
Kai Chen's avatar
Kai Chen committed
352
353
354
355
356
357
358
359
360
361
362
363
  <tr>
    <td>Fast R-CNN</td>
    <td>0.285</td>
    <td>-</td>
    <td>0.375 / 0.398</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>0.377</td>
    <td>-</td>
    <td>0.504 / 0.574</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
364
365
366
367
368
369
370
371
372
373
374
</table>

\*1. Detectron reports the speed on Facebook's Big Basin servers (P100),
on our V100 servers it is slower so we use the official reported values.

\*2. Detectron.pytorch does not report the runtime and we encountered some issue to
run it on V100, so we report the speed on TITAN XP.

\*3. The speed of pytorch-style ResNet is approximately 5% slower than caffe-style,
and we report the pytorch-style results here.

Kai Chen's avatar
Kai Chen committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
\*4. We also run the models on a DGX-1 server (P100) and the speed is almost the same as our V100 servers.

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
    <th>Detectron.pytorch (XP)</th>
    <th>mmdetection (V100 / XP)</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
    <td>14.5 / 15.4</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
    <td></td>
    <td>9.9 / 9.8</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
    <td></td>
    <td>7.7 / 7.4</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
406
407
408
409
410
411
412
413
414
415
416
417
  <tr>
    <td>Fast R-CNN</td>
    <td>12.5</td>
    <td></td>
    <td>14.5 / 14.1</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>9.9</td>
    <td></td>
    <td>10.6 / 10.3</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
418
419
</table>

Kai Chen's avatar
Kai Chen committed
420
421
422
423
424
425
426
427
428
429
### Training memory

We perform various tests and there is no doubt that mmdetection is more memory
efficient than Detectron, and the main cause is the deep learning framework itself, not our efforts.
Besides, Caffe2 and PyTorch have different apis to obtain memory usage
whose implementation is not exactly the same.

`nvidia-smi` shows a larger memory usage for both detectron and mmdetection, e.g.,
we observe a much higher memory usage when we train Mask R-CNN with 2 images per GPU using detectron (10.6G) and mmdetection (9.3G), which is obviously more than actually required.

Kai Chen's avatar
Kai Chen committed
430
> With mmdetection, we can train R-50 FPN Mask R-CNN with **4** images per GPU (TITAN XP, 12G),
Kai Chen's avatar
Kai Chen committed
431
which is a promising result.