README.md 15.2 KB
Newer Older
1
# BERT (Bidirectional Encoder Representations from Transformers)
2
3
4
5

The academic paper which describes BERT in detail and provides full results on a
number of tasks can be found here: https://arxiv.org/abs/1810.04805.

6
This repository contains TensorFlow 2.x implementation for BERT.
7

8
9
10
11
**Note: We are in the progress to update the documentation to use
official/nlp/train.py as the central place for the training driver.
Internal users please refer to the g3doc for documentation.**

12
13
14
15
16
17
18
19
20
21
22
23
24
25
## Contents
  * [Contents](#contents)
  * [Pre-trained Models](#pre-trained-models)
    * [Restoring from Checkpoints](#restoring-from-checkpoints)
  * [Set Up](#set-up)
  * [Process Datasets](#process-datasets)
  * [Fine-tuning with BERT](#fine-tuning-with-bert)
    * [Cloud GPUs and TPUs](#cloud-gpus-and-tpus)
    * [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks)
    * [SQuAD 1.1](#squad-1.1)


## Pre-trained Models

26
27
28
29
30
31
We released both checkpoints and tf.hub modules as the pretrained models for
fine-tuning. They are TF 2.x compatible and are converted from the checkpoints
released in TF 1.x official BERT repository
[google-research/bert](https://github.com/google-research/bert)
in order to keep consistent with BERT paper.

32

Hongkun Yu's avatar
Hongkun Yu committed
33
34
### Access to Pretrained Checkpoints

35
Pretrained checkpoints can be found in the following links:
Hongkun Yu's avatar
Hongkun Yu committed
36

37
38
39
**Note: We have switched BERT implementation
to use Keras functional-style networks in [nlp/modeling](../modeling).
The new checkpoints are:**
Hongkun Yu's avatar
Hongkun Yu committed
40

41
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
42
    24-layer, 1024-hidden, 16-heads, 340M parameters
43
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
44
    24-layer, 1024-hidden, 16-heads, 340M parameters
45
*   **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
46
    12-layer, 768-hidden, 12-heads, 110M parameters
47
*   **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
48
    24-layer, 1024-hidden, 16-heads, 340M parameters
49
*   **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
50
    12-layer, 768-hidden, 12-heads , 110M parameters
51
*   **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
52
    24-layer, 1024-hidden, 16-heads, 340M parameters
53
54
*   **[`BERT-Base, Multilingual Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/multi_cased_L-12_H-768_A-12.tar.gz)**:
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
Hongkun Yu's avatar
Hongkun Yu committed
55

Hongkun Yu's avatar
Hongkun Yu committed
56
57
We recommend to host checkpoints on Google Cloud storage buckets when you use
Cloud GPU/TPU.
Hongkun Yu's avatar
Hongkun Yu committed
58

59
60
### Restoring from Checkpoints

61
`tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore
62
63
64
65
66
67
68
69
70
71
72
73
weights from provided pre-trained checkpoints, you can use the following code:

```python
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
```

Checkpoints featuring native serialized Keras models
(i.e. model.load()/load_weights()) will be available soon.

74
75
76
77
78
### Access to Pretrained hub modules.

Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the
following links:

79
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/)**:
80
    24-layer, 1024-hidden, 16-heads, 340M parameters
81
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/)**:
82
    24-layer, 1024-hidden, 16-heads, 340M parameters
83
*   **[`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/)**:
84
    12-layer, 768-hidden, 12-heads, 110M parameters
85
*   **[`BERT-Large, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/)**:
86
    24-layer, 1024-hidden, 16-heads, 340M parameters
87
*   **[`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/)**:
88
    12-layer, 768-hidden, 12-heads , 110M parameters
89
*   **[`BERT-Large, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/)**:
90
    24-layer, 1024-hidden, 16-heads, 340M parameters
91
*   **[`BERT-Base, Multilingual Cased`](https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/)**:
92
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
93
*   **[`BERT-Base, Chinese`](https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/)**:
94
95
96
    Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads,
    110M parameters

97
98
99
100
101
102
103
104
105
## Set Up

```shell
export PYTHONPATH="$PYTHONPATH:/path/to/models"
```

Install `tf-nightly` to get latest updates:

```shell
106
pip install tf-nightly-gpu
107
108
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
110
With TPU, GPU support is not necessary. First, you need to create a `tf-nightly`
TPU with [ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):
111
112
113
114
115

```shell
ctpu up -name <instance name> --tf-version=”nightly”
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
Second, you need to install TF 2 `tf-nightly` on your VM:
117
118

```shell
119
pip install tf-nightly
120
121
122
123
```

## Process Datasets

124
### Pre-training
125
126

There is no change to generate pre-training data. Please use the script
127
[`../data/create_pretraining_data.py`](../data/create_pretraining_data.py)
Hongkun Yu's avatar
Hongkun Yu committed
128
129
130
which is essentially branched from [BERT research repo](https://github.com/google-research/bert)
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
131

Kyle Ziegler's avatar
Kyle Ziegler committed
132
133
134
135
Running the pre-training script requires an input and output directory, as well as a vocab file.  Note that max_seq_length will need to match the sequence length parameter you specify when you run pre-training.

Example shell script to call create_pretraining_data.py
```
Kyle Ziegler's avatar
Kyle Ziegler committed
136
137
export WORKING_DIR='local disk or cloud location'
export BERT_DIR='local disk or cloud location'
Kyle Ziegler's avatar
Kyle Ziegler committed
138
139
140
python models/official/nlp/data/create_pretraining_data.py \
  --input_file=$WORKING_DIR/input/input.txt \
  --output_file=$WORKING_DIR/output/tf_examples.tfrecord \
Kyle Ziegler's avatar
Kyle Ziegler committed
141
  --vocab_file=$BERT_DIR/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
Kyle Ziegler's avatar
Kyle Ziegler committed
142
  --do_lower_case=True \
Kyle Ziegler's avatar
Kyle Ziegler committed
143
144
  --max_seq_length=512 \
  --max_predictions_per_seq=76 \
Kyle Ziegler's avatar
Kyle Ziegler committed
145
146
147
148
  --masked_lm_prob=0.15 \
  --random_seed=12345 \
  --dupe_factor=5
```
149
150
151
152

### Fine-tuning

To prepare the fine-tuning data for final model training, use the
153
154
155
156
[`../data/create_finetuning_data.py`](../data/create_finetuning_data.py) script.
Resulting datasets in `tf_record` format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in following sections:
157

158
159
160
161
162
163
* GLUE

Users can download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
164
Also, users can download [Pretrained Checkpoint](#access-to-pretrained-checkpoints) and locate on some directory `$BERT_DIR` instead of using checkpoints on Google Cloud Storage.
165
166
167

```shell
export GLUE_DIR=~/glue
168
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
169
170
171

export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
172
python ../data/create_finetuning_data.py \
173
 --input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
174
 --vocab_file=${BERT_DIR}/vocab.txt \
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
 --train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
 --eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
 --fine_tuning_task_type=classification --max_seq_length=128 \
 --classification_task_name=${TASK_NAME}
```

* SQUAD

The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation.

The necessary files can be found here:

*   [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
*   [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
*   [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
*   [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
*   [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
*   [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)

```shell
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
199
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
200
201
export OUTPUT_DIR=gs://some_bucket/datasets

202
python ../data/create_finetuning_data.py \
203
 --squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
204
 --vocab_file=${BERT_DIR}/vocab.txt \
205
206
207
208
209
 --train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
 --fine_tuning_task_type=squad --max_seq_length=384
```

ChAnYaNG97's avatar
ChAnYaNG97 committed
210
Note: To create fine-tuning data with SQUAD 2.0, you need to add flag `--version_2_with_negative=True`.
chanyang97's avatar
chanyang97 committed
211

212
213
214
215
216
217
218
## Fine-tuning with BERT

### Cloud GPUs and TPUs

* Cloud Storage

The unzipped pre-trained model files can also be found in the Google Cloud
219
Storage folder `gs://cloud-tpu-checkpoints/bert/keras_bert`. For example:
220
221

```shell
222
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
223
224
225
226
227
228
229
230
231
232
233
export MODEL_DIR=gs://some_bucket/my_output_dir
```

Currently, users are able to access to `tf-nightly` TPUs and the following TPU
script should run with `tf-nightly`.

* GPU -> TPU

Just add the following flags to `run_classifier.py` or `run_squad.py`:

```shell
234
  --distribution_strategy=tpu
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

### Sentence and Sentence-pair Classification Tasks

This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
250
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
251
252
253
254
255
256
257
258
259
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
260
261
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
262
263
264
265
266
267
  --train_batch_size=4 \
  --eval_batch_size=4 \
  --steps_per_loop=1 \
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
268
  --distribution_strategy=mirrored
269
270
```

271
272
273
274
Alternatively, instead of specifying `init_checkpoint`, you can specify
`hub_module_url` to employ a pretraind BERT hub module, e.g.,
` --hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1`.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
After training a model, to get predictions from the classifier, you can set the
`--mode=predict` and offer the test set tfrecords to `--eval_data_path`.
Output will be created in file called test_results.tsv in the output folder.
Each line will contain output for each sample, columns are the class
probabilities.

```shell
python run_classifier.py \
  --mode='predict' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --eval_batch_size=4 \
  --model_dir=${MODEL_DIR} \
  --distribution_strategy=mirrored
```

292
293
294
295
To use TPU, you only need to switch distribution strategy type to `tpu` with TPU
information and use remote storage for model checkpoints.

```shell
296
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
297
298
299
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
300
export TASK=MRPC
301
302
303
304
305
306

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
307
308
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
309
310
  --train_batch_size=32 \
  --eval_batch_size=32 \
Hongkun Yu's avatar
Hongkun Yu committed
311
  --steps_per_loop=1000 \
312
313
314
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
315
  --distribution_strategy=tpu \
316
317
318
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

Hongkun Yu's avatar
Hongkun Yu committed
319
320
321
322
Note that, we specify `steps_per_loop=1000` for TPU, because running a loop of
training steps inside a `tf.function` can significantly increase TPU utilization
and callbacks will not be called inside the loop.

323
324
325
326
327
328
329
330
331
332
333
### SQuAD 1.1

The Stanford Question Answering Dataset (SQuAD) is a popular question answering
benchmark dataset. See more in [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/).

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
334
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
335
336
337
338
339
340
341
342
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
343
344
345
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
346
347
348
349
350
  --train_batch_size=4 \
  --predict_batch_size=4 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
351
  --distribution_strategy=mirrored
352
353
```

354
355
356
Similarily, you can replace `init_checkpoint` FLAG with `hub_module_url` to
specify a hub module path.

357
358
359
360
`run_squad.py` writes the prediction for `--predict_file` by default. If you set
the `--model=predict` and offer the SQuAD test data, the scripts will generate
the prediction json file.

361
362
363
364
To use TPU, you need switch distribution strategy type to `tpu` with TPU
information.

```shell
365
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
366
367
368
369
370
371
372
373
374
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
375
376
377
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
378
379
380
381
  --train_batch_size=32 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
382
  --distribution_strategy=tpu \
383
384
385
386
387
388
389
390
391
392
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

The dev set predictions will be saved into a file called predictions.json in the
model_dir:

```shell
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
```

393