README.md 14.4 KB
Newer Older
1
# BERT (Bidirectional Encoder Representations from Transformers)
2
3
4
5

The academic paper which describes BERT in detail and provides full results on a
number of tasks can be found here: https://arxiv.org/abs/1810.04805.

6
This repository contains TensorFlow 2.x implementation for BERT.
7

8
9
10
11
**Note: We are in the progress to update the documentation to use
official/nlp/train.py as the central place for the training driver.
Internal users please refer to the g3doc for documentation.**

12
13
14
15
16
17
18
19
20
21
22
23
24
25
## Contents
  * [Contents](#contents)
  * [Pre-trained Models](#pre-trained-models)
    * [Restoring from Checkpoints](#restoring-from-checkpoints)
  * [Set Up](#set-up)
  * [Process Datasets](#process-datasets)
  * [Fine-tuning with BERT](#fine-tuning-with-bert)
    * [Cloud GPUs and TPUs](#cloud-gpus-and-tpus)
    * [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks)
    * [SQuAD 1.1](#squad-1.1)


## Pre-trained Models

26
27
28
29
30
31
We released both checkpoints and tf.hub modules as the pretrained models for
fine-tuning. They are TF 2.x compatible and are converted from the checkpoints
released in TF 1.x official BERT repository
[google-research/bert](https://github.com/google-research/bert)
in order to keep consistent with BERT paper.

32

Hongkun Yu's avatar
Hongkun Yu committed
33
34
### Access to Pretrained Checkpoints

35
Pretrained checkpoints can be found in the following links:
Hongkun Yu's avatar
Hongkun Yu committed
36

37
38
39
**Note: We have switched BERT implementation
to use Keras functional-style networks in [nlp/modeling](../modeling).
The new checkpoints are:**
Hongkun Yu's avatar
Hongkun Yu committed
40

41
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
42
    24-layer, 1024-hidden, 16-heads, 340M parameters
43
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
44
    24-layer, 1024-hidden, 16-heads, 340M parameters
45
*   **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
46
    12-layer, 768-hidden, 12-heads, 110M parameters
47
*   **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
48
    24-layer, 1024-hidden, 16-heads, 340M parameters
49
*   **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
50
    12-layer, 768-hidden, 12-heads , 110M parameters
51
*   **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
52
    24-layer, 1024-hidden, 16-heads, 340M parameters
53
54
*   **[`BERT-Base, Multilingual Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/multi_cased_L-12_H-768_A-12.tar.gz)**:
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
Hongkun Yu's avatar
Hongkun Yu committed
55

Hongkun Yu's avatar
Hongkun Yu committed
56
57
We recommend to host checkpoints on Google Cloud storage buckets when you use
Cloud GPU/TPU.
Hongkun Yu's avatar
Hongkun Yu committed
58

59
60
### Restoring from Checkpoints

61
`tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore
62
63
64
65
66
67
68
69
70
71
72
73
weights from provided pre-trained checkpoints, you can use the following code:

```python
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
```

Checkpoints featuring native serialized Keras models
(i.e. model.load()/load_weights()) will be available soon.

74
75
76
77
78
### Access to Pretrained hub modules.

Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the
following links:

79
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/)**:
80
    24-layer, 1024-hidden, 16-heads, 340M parameters
81
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/)**:
82
    24-layer, 1024-hidden, 16-heads, 340M parameters
83
*   **[`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/)**:
84
    12-layer, 768-hidden, 12-heads, 110M parameters
85
*   **[`BERT-Large, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/)**:
86
    24-layer, 1024-hidden, 16-heads, 340M parameters
87
*   **[`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/)**:
88
    12-layer, 768-hidden, 12-heads , 110M parameters
89
*   **[`BERT-Large, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/)**:
90
    24-layer, 1024-hidden, 16-heads, 340M parameters
91
*   **[`BERT-Base, Multilingual Cased`](https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/)**:
92
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
93
*   **[`BERT-Base, Chinese`](https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/)**:
94
95
96
    Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads,
    110M parameters

97
98
99
100
101
102
103
104
105
## Set Up

```shell
export PYTHONPATH="$PYTHONPATH:/path/to/models"
```

Install `tf-nightly` to get latest updates:

```shell
106
pip install tf-nightly-gpu
107
108
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
110
With TPU, GPU support is not necessary. First, you need to create a `tf-nightly`
TPU with [ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):
111
112
113
114
115

```shell
ctpu up -name <instance name> --tf-version=”nightly”
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
Second, you need to install TF 2 `tf-nightly` on your VM:
117
118

```shell
119
pip install tf-nightly
120
121
122
123
```

## Process Datasets

124
### Pre-training
125
126

There is no change to generate pre-training data. Please use the script
127
[`../data/create_pretraining_data.py`](../data/create_pretraining_data.py)
Hongkun Yu's avatar
Hongkun Yu committed
128
129
130
which is essentially branched from [BERT research repo](https://github.com/google-research/bert)
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
131

132
133
134
135

### Fine-tuning

To prepare the fine-tuning data for final model training, use the
136
137
138
139
[`../data/create_finetuning_data.py`](../data/create_finetuning_data.py) script.
Resulting datasets in `tf_record` format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in following sections:
140

141
142
143
144
145
146
* GLUE

Users can download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
147
Also, users can download [Pretrained Checkpoint](#access-to-pretrained-checkpoints) and locate on some directory `$BERT_DIR` instead of using checkpoints on Google Cloud Storage.
148
149
150

```shell
export GLUE_DIR=~/glue
151
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
152
153
154

export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
155
python ../data/create_finetuning_data.py \
156
 --input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
157
 --vocab_file=${BERT_DIR}/vocab.txt \
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
 --train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
 --eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
 --fine_tuning_task_type=classification --max_seq_length=128 \
 --classification_task_name=${TASK_NAME}
```

* SQUAD

The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation.

The necessary files can be found here:

*   [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
*   [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
*   [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
*   [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
*   [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
*   [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)

```shell
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
182
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
183
184
export OUTPUT_DIR=gs://some_bucket/datasets

185
python ../data/create_finetuning_data.py \
186
 --squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
187
 --vocab_file=${BERT_DIR}/vocab.txt \
188
189
190
191
192
 --train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
 --fine_tuning_task_type=squad --max_seq_length=384
```

ChAnYaNG97's avatar
ChAnYaNG97 committed
193
Note: To create fine-tuning data with SQUAD 2.0, you need to add flag `--version_2_with_negative=True`.
chanyang97's avatar
chanyang97 committed
194

195
196
197
198
199
200
201
## Fine-tuning with BERT

### Cloud GPUs and TPUs

* Cloud Storage

The unzipped pre-trained model files can also be found in the Google Cloud
202
Storage folder `gs://cloud-tpu-checkpoints/bert/keras_bert`. For example:
203
204

```shell
205
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
206
207
208
209
210
211
212
213
214
215
216
export MODEL_DIR=gs://some_bucket/my_output_dir
```

Currently, users are able to access to `tf-nightly` TPUs and the following TPU
script should run with `tf-nightly`.

* GPU -> TPU

Just add the following flags to `run_classifier.py` or `run_squad.py`:

```shell
217
  --distribution_strategy=tpu
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

### Sentence and Sentence-pair Classification Tasks

This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
233
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
234
235
236
237
238
239
240
241
242
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
243
244
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
245
246
247
248
249
250
  --train_batch_size=4 \
  --eval_batch_size=4 \
  --steps_per_loop=1 \
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
251
  --distribution_strategy=mirrored
252
253
```

254
255
256
257
Alternatively, instead of specifying `init_checkpoint`, you can specify
`hub_module_url` to employ a pretraind BERT hub module, e.g.,
` --hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1`.

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
After training a model, to get predictions from the classifier, you can set the
`--mode=predict` and offer the test set tfrecords to `--eval_data_path`.
Output will be created in file called test_results.tsv in the output folder.
Each line will contain output for each sample, columns are the class
probabilities.

```shell
python run_classifier.py \
  --mode='predict' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --eval_batch_size=4 \
  --model_dir=${MODEL_DIR} \
  --distribution_strategy=mirrored
```

275
276
277
278
To use TPU, you only need to switch distribution strategy type to `tpu` with TPU
information and use remote storage for model checkpoints.

```shell
279
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
280
281
282
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
283
export TASK=MRPC
284
285
286
287
288
289

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
290
291
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
292
293
  --train_batch_size=32 \
  --eval_batch_size=32 \
Hongkun Yu's avatar
Hongkun Yu committed
294
  --steps_per_loop=1000 \
295
296
297
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
298
  --distribution_strategy=tpu \
299
300
301
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

Hongkun Yu's avatar
Hongkun Yu committed
302
303
304
305
Note that, we specify `steps_per_loop=1000` for TPU, because running a loop of
training steps inside a `tf.function` can significantly increase TPU utilization
and callbacks will not be called inside the loop.

306
307
308
309
310
311
312
313
314
315
316
### SQuAD 1.1

The Stanford Question Answering Dataset (SQuAD) is a popular question answering
benchmark dataset. See more in [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/).

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
317
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
318
319
320
321
322
323
324
325
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
326
327
328
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
329
330
331
332
333
  --train_batch_size=4 \
  --predict_batch_size=4 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
334
  --distribution_strategy=mirrored
335
336
```

337
338
339
Similarily, you can replace `init_checkpoint` FLAG with `hub_module_url` to
specify a hub module path.

340
341
342
343
`run_squad.py` writes the prediction for `--predict_file` by default. If you set
the `--model=predict` and offer the SQuAD test data, the scripts will generate
the prediction json file.

344
345
346
347
To use TPU, you need switch distribution strategy type to `tpu` with TPU
information.

```shell
348
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
349
350
351
352
353
354
355
356
357
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
358
359
360
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
361
362
363
364
  --train_batch_size=32 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
365
  --distribution_strategy=tpu \
366
367
368
369
370
371
372
373
374
375
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

The dev set predictions will be saved into a file called predictions.json in the
model_dir:

```shell
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
```

376