README.md 14.2 KB
Newer Older
1
# BERT (Bidirectional Encoder Representations from Transformers)
2
3
4
5

The academic paper which describes BERT in detail and provides full results on a
number of tasks can be found here: https://arxiv.org/abs/1810.04805.

6
This repository contains TensorFlow 2.x implementation for BERT.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

## Contents
  * [Contents](#contents)
  * [Pre-trained Models](#pre-trained-models)
    * [Restoring from Checkpoints](#restoring-from-checkpoints)
  * [Set Up](#set-up)
  * [Process Datasets](#process-datasets)
  * [Fine-tuning with BERT](#fine-tuning-with-bert)
    * [Cloud GPUs and TPUs](#cloud-gpus-and-tpus)
    * [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks)
    * [SQuAD 1.1](#squad-1.1)


## Pre-trained Models

22
23
24
25
26
27
We released both checkpoints and tf.hub modules as the pretrained models for
fine-tuning. They are TF 2.x compatible and are converted from the checkpoints
released in TF 1.x official BERT repository
[google-research/bert](https://github.com/google-research/bert)
in order to keep consistent with BERT paper.

28

Hongkun Yu's avatar
Hongkun Yu committed
29
30
### Access to Pretrained Checkpoints

31
Pretrained checkpoints can be found in the following links:
Hongkun Yu's avatar
Hongkun Yu committed
32

33
34
35
**Note: We have switched BERT implementation
to use Keras functional-style networks in [nlp/modeling](../modeling).
The new checkpoints are:**
Hongkun Yu's avatar
Hongkun Yu committed
36

37
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
38
    24-layer, 1024-hidden, 16-heads, 340M parameters
39
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
40
    24-layer, 1024-hidden, 16-heads, 340M parameters
41
*   **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
42
    12-layer, 768-hidden, 12-heads, 110M parameters
43
*   **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
44
    24-layer, 1024-hidden, 16-heads, 340M parameters
45
*   **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
46
    12-layer, 768-hidden, 12-heads , 110M parameters
47
*   **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
48
    24-layer, 1024-hidden, 16-heads, 340M parameters
49
50
*   **[`BERT-Base, Multilingual Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/multi_cased_L-12_H-768_A-12.tar.gz)**:
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
Hongkun Yu's avatar
Hongkun Yu committed
51

Hongkun Yu's avatar
Hongkun Yu committed
52
53
We recommend to host checkpoints on Google Cloud storage buckets when you use
Cloud GPU/TPU.
Hongkun Yu's avatar
Hongkun Yu committed
54

55
56
### Restoring from Checkpoints

57
`tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore
58
59
60
61
62
63
64
65
66
67
68
69
weights from provided pre-trained checkpoints, you can use the following code:

```python
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
```

Checkpoints featuring native serialized Keras models
(i.e. model.load()/load_weights()) will be available soon.

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
### Access to Pretrained hub modules.

Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the
following links:

*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1)**:
    12-layer, 768-hidden, 12-heads, 110M parameters
*   **[`BERT-Large, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/1)**:
    12-layer, 768-hidden, 12-heads , 110M parameters
*   **[`BERT-Large, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Multilingual Cased`](https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/1)**:
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
*   **[`BERT-Base, Chinese`](https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/1)**:
    Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads,
    110M parameters

93
94
95
96
97
98
99
100
101
## Set Up

```shell
export PYTHONPATH="$PYTHONPATH:/path/to/models"
```

Install `tf-nightly` to get latest updates:

```shell
102
pip install tf-nightly-gpu
103
104
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
106
With TPU, GPU support is not necessary. First, you need to create a `tf-nightly`
TPU with [ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):
107
108
109
110
111

```shell
ctpu up -name <instance name> --tf-version=”nightly”
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
Second, you need to install TF 2 `tf-nightly` on your VM:
113
114

```shell
115
pip install tf-nightly
116
117
118
119
```

## Process Datasets

120
### Pre-training
121
122

There is no change to generate pre-training data. Please use the script
123
[`../data/create_pretraining_data.py`](../data/create_pretraining_data.py)
Hongkun Yu's avatar
Hongkun Yu committed
124
125
126
which is essentially branched from [BERT research repo](https://github.com/google-research/bert)
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
127

128
129
130
131

### Fine-tuning

To prepare the fine-tuning data for final model training, use the
132
133
134
135
[`../data/create_finetuning_data.py`](../data/create_finetuning_data.py) script.
Resulting datasets in `tf_record` format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in following sections:
136

137
138
139
140
141
142
* GLUE

Users can download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
143
Also, users can download [Pretrained Checkpoint](#access-to-pretrained-checkpoints) and locate on some directory `$BERT_DIR` instead of using checkpoints on Google Cloud Storage.
144
145
146

```shell
export GLUE_DIR=~/glue
147
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
148
149
150

export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
151
python ../data/create_finetuning_data.py \
152
 --input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
153
 --vocab_file=${BERT_DIR}/vocab.txt \
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
 --train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
 --eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
 --fine_tuning_task_type=classification --max_seq_length=128 \
 --classification_task_name=${TASK_NAME}
```

* SQUAD

The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation.

The necessary files can be found here:

*   [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
*   [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
*   [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
*   [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
*   [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
*   [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)

```shell
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
178
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
179
180
export OUTPUT_DIR=gs://some_bucket/datasets

181
python ../data/create_finetuning_data.py \
182
 --squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
183
 --vocab_file=${BERT_DIR}/vocab.txt \
184
185
186
187
188
189
190
191
192
193
194
195
 --train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
 --fine_tuning_task_type=squad --max_seq_length=384
```

## Fine-tuning with BERT

### Cloud GPUs and TPUs

* Cloud Storage

The unzipped pre-trained model files can also be found in the Google Cloud
196
Storage folder `gs://cloud-tpu-checkpoints/bert/keras_bert`. For example:
197
198

```shell
199
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
200
201
202
203
204
205
206
207
208
209
210
export MODEL_DIR=gs://some_bucket/my_output_dir
```

Currently, users are able to access to `tf-nightly` TPUs and the following TPU
script should run with `tf-nightly`.

* GPU -> TPU

Just add the following flags to `run_classifier.py` or `run_squad.py`:

```shell
211
  --distribution_strategy=tpu
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

### Sentence and Sentence-pair Classification Tasks

This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
227
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
228
229
230
231
232
233
234
235
236
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
237
238
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
239
240
241
242
243
244
  --train_batch_size=4 \
  --eval_batch_size=4 \
  --steps_per_loop=1 \
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
245
  --distribution_strategy=mirrored
246
247
```

248
249
250
251
Alternatively, instead of specifying `init_checkpoint`, you can specify
`hub_module_url` to employ a pretraind BERT hub module, e.g.,
` --hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1`.

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
After training a model, to get predictions from the classifier, you can set the
`--mode=predict` and offer the test set tfrecords to `--eval_data_path`.
Output will be created in file called test_results.tsv in the output folder.
Each line will contain output for each sample, columns are the class
probabilities.

```shell
python run_classifier.py \
  --mode='predict' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --eval_batch_size=4 \
  --model_dir=${MODEL_DIR} \
  --distribution_strategy=mirrored
```

269
270
271
272
To use TPU, you only need to switch distribution strategy type to `tpu` with TPU
information and use remote storage for model checkpoints.

```shell
273
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
274
275
276
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
277
export TASK=MRPC
278
279
280
281
282
283

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
284
285
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
286
287
  --train_batch_size=32 \
  --eval_batch_size=32 \
Hongkun Yu's avatar
Hongkun Yu committed
288
  --steps_per_loop=1000 \
289
290
291
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
292
  --distribution_strategy=tpu \
293
294
295
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

Hongkun Yu's avatar
Hongkun Yu committed
296
297
298
299
Note that, we specify `steps_per_loop=1000` for TPU, because running a loop of
training steps inside a `tf.function` can significantly increase TPU utilization
and callbacks will not be called inside the loop.

300
301
302
303
304
305
306
307
308
309
310
### SQuAD 1.1

The Stanford Question Answering Dataset (SQuAD) is a popular question answering
benchmark dataset. See more in [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/).

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
311
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
312
313
314
315
316
317
318
319
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
320
321
322
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
323
324
325
326
327
  --train_batch_size=4 \
  --predict_batch_size=4 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
328
  --distribution_strategy=mirrored
329
330
```

331
332
333
Similarily, you can replace `init_checkpoint` FLAG with `hub_module_url` to
specify a hub module path.

334
335
336
337
`run_squad.py` writes the prediction for `--predict_file` by default. If you set
the `--model=predict` and offer the SQuAD test data, the scripts will generate
the prediction json file.

338
339
340
341
To use TPU, you need switch distribution strategy type to `tpu` with TPU
information.

```shell
342
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
343
344
345
346
347
348
349
350
351
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
352
353
354
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
355
356
357
358
  --train_batch_size=32 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
359
  --distribution_strategy=tpu \
360
361
362
363
364
365
366
367
368
369
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

The dev set predictions will be saved into a file called predictions.json in the
model_dir:

```shell
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
```

370