README.md 12.8 KB
Newer Older
1
# BERT (Bidirectional Encoder Representations from Transformers)
2
3
4
5

The academic paper which describes BERT in detail and provides full results on a
number of tasks can be found here: https://arxiv.org/abs/1810.04805.

6
This repository contains TensorFlow 2 implementation for BERT.
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
N.B. This repository is under active development. Though we intend
to keep the top-level BERT Keras model interface stable, expect continued
changes to the training code, utility function interface and flags.

## Contents
  * [Contents](#contents)
  * [Pre-trained Models](#pre-trained-models)
    * [Restoring from Checkpoints](#restoring-from-checkpoints)
  * [Set Up](#set-up)
  * [Process Datasets](#process-datasets)
  * [Fine-tuning with BERT](#fine-tuning-with-bert)
    * [Cloud GPUs and TPUs](#cloud-gpus-and-tpus)
    * [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks)
    * [SQuAD 1.1](#squad-1.1)


## Pre-trained Models

Our current released checkpoints are exactly the same as TF 1.x official BERT
repository, thus inside `BertConfig`, there is `backward_compatible=True`. We
are going to release new pre-trained checkpoints soon.

Hongkun Yu's avatar
Hongkun Yu committed
30
31
32
33
34
### Access to Pretrained Checkpoints

We provide checkpoints that are converted from [google-research/bert](https://github.com/google-research/bert),
in order to keep consistent with BERT paper.

Hongkun Yu's avatar
Hongkun Yu committed
35
36
37
38
39
The stable model checkpoints work with [v2.0 release](https://github.com/tensorflow/models/releases/tag/v2.0).

**Note: these checkpoints are not compatible with the current master
[run_classifier.py](run_classifier.py) example.**

Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/uncased_L-12_H-768_A-12.tar.gz)**:
    12-layer, 768-hidden, 12-heads, 110M parameters
*   **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/cased_L-12_H-768_A-12.tar.gz)**:
    12-layer, 768-hidden, 12-heads , 110M parameters
*   **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/cased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters

Hongkun Yu's avatar
Hongkun Yu committed
53
54
55
**Note: We are in the middle of a transition stage to switch BERT implementation
to use Keras functional-style networks in [nlp/modeling](../modeling).
The checkpoint above will be deleted once transition is done.**
Hongkun Yu's avatar
Hongkun Yu committed
56

Hongkun Yu's avatar
Hongkun Yu committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
The new checkpoints work with [run_classifier.py](run_classifier.py) example
are:

*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**:
    12-layer, 768-hidden, 12-heads, 110M parameters
*   **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**:
    12-layer, 768-hidden, 12-heads , 110M parameters
*   **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters

We recommend to host checkpoints on Google Cloud storage buckets when you use
Cloud GPU/TPU.
Hongkun Yu's avatar
Hongkun Yu committed
75

76
77
### Restoring from Checkpoints

78
`tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
weights from provided pre-trained checkpoints, you can use the following code:

```python
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
```

Checkpoints featuring native serialized Keras models
(i.e. model.load()/load_weights()) will be available soon.

## Set Up

```shell
export PYTHONPATH="$PYTHONPATH:/path/to/models"
```

Install `tf-nightly` to get latest updates:

```shell
100
pip install tf-nightly-gpu
101
102
103
104
105
106
107
108
109
```

With TPU, GPU support is not necessary. First, you need to create a `tf-nigthly`
TPU with [cptu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):

```shell
ctpu up -name <instance name> --tf-version=”nightly”
```

110
Second, you need to install TF 2 `tf-night` on your VM:
111
112

```shell
113
pip install tf-nightly
114
115
```

Hongkun Yu's avatar
Hongkun Yu committed
116
117
118
Warning: More details TPU-specific set-up instructions and tutorial should come
along with official TF 2.x release for TPU. Note that this repo is not officially
supported by Google Cloud TPU team yet.
119
120
121

## Process Datasets

122
### Pre-training
123
124
125
126
127
128

There is no change to generate pre-training data. Please use the script
[`create_pretraining_data.py`](https://github.com/google-research/bert/blob/master/create_pretraining_data.py)
inside [BERT research repo](https://github.com/google-research/bert) to get
processed pre-training data.

129
130
131
132
133
134
135
136
137

### Fine-tuning

To prepare the fine-tuning data for final model training, use the
[`create_finetuning_data.py`](./create_finetuning_data.py) script.  Resulting
datasets in `tf_record` format and training meta data should be later passed to
training or evaluation scripts. The task-specific arguments are described in
following sections:

138
139
140
141
142
143
144
145
146
147
148
149
150
* GLUE

Users can download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.

```shell
export GLUE_DIR=~/glue
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16

export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
151
152
python create_finetuning_data.py \
 --input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
 --vocab_file=${BERT_BASE_DIR}/vocab.txt \
 --train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
 --eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
 --fine_tuning_task_type=classification --max_seq_length=128 \
 --classification_task_name=${TASK_NAME}
```

* SQUAD

The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation.

The necessary files can be found here:

*   [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
*   [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
*   [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
*   [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
*   [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
*   [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)

```shell
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16
export OUTPUT_DIR=gs://some_bucket/datasets

181
182
python create_finetuning_data.py \
 --squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
 --vocab_file=${BERT_BASE_DIR}/vocab.txt \
 --train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
 --fine_tuning_task_type=squad --max_seq_length=384
```

## Fine-tuning with BERT

### Cloud GPUs and TPUs

* Cloud Storage

The unzipped pre-trained model files can also be found in the Google Cloud
Storage folder `gs://cloud-tpu-checkpoints/bert/tf_20`. For example:

```shell
Hongkun Yu's avatar
Hongkun Yu committed
199
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
export MODEL_DIR=gs://some_bucket/my_output_dir
```

Currently, users are able to access to `tf-nightly` TPUs and the following TPU
script should run with `tf-nightly`.

* GPU -> TPU

Just add the following flags to `run_classifier.py` or `run_squad.py`:

```shell
  --strategy_type=tpu
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

### Sentence and Sentence-pair Classification Tasks

This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
  --bert_config_file=${BERT_BASE_DIR}/bert_config.json \
  --init_checkpoint=${BERT_BASE_DIR}/bert_model.ckpt \
  --train_batch_size=4 \
  --eval_batch_size=4 \
  --steps_per_loop=1 \
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
  --strategy_type=mirror
```

To use TPU, you only need to switch distribution strategy type to `tpu` with TPU
information and use remote storage for model checkpoints.

```shell
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
  --bert_config_file=$BERT_BASE_DIR/bert_config.json \
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
  --train_batch_size=32 \
  --eval_batch_size=32 \
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
  --strategy_type=tpu \
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

### SQuAD 1.1

The Stanford Question Answering Dataset (SQuAD) is a popular question answering
benchmark dataset. See more in [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/).

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
  --vocab_file=${BERT_BASE_DIR}/vocab.txt \
  --bert_config_file=$BERT_BASE_DIR/bert_config.json \
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
  --train_batch_size=4 \
  --predict_batch_size=4 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
  --strategy_type=mirror
```

To use TPU, you need switch distribution strategy type to `tpu` with TPU
information.

```shell
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
  --vocab_file=${BERT_BASE_DIR}/vocab.txt \
  --bert_config_file=$BERT_BASE_DIR/bert_config.json \
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
  --train_batch_size=32 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
  --strategy_type=tpu \
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

The dev set predictions will be saved into a file called predictions.json in the
model_dir:

```shell
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
```

336