keras_cifar_main.py 7.19 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
31
32
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils


33
34
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
35
36
]

37

38
39
40
41
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
42
  """Handles linear scaling rule and LR decay.
43

44
45
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
46
47
48
49

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
50
51
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
52
53
54
55

  Returns:
    Adjusted learning rate.
  """
56
  del current_batch, batches_per_epoch  # not used
Shining Sun's avatar
Shining Sun committed
57
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
58
  learning_rate = initial_learning_rate
59
  for mult, start_epoch in LR_SCHEDULE:
60
61
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
62
63
64
65
66
67
68
69
70
71
72
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

Shining Sun's avatar
Shining Sun committed
73
  This method converts the label to one hot to fit the loss function.
74

75
76
77
78
79
80
81
82
83
84
  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
85
  label = tf.compat.v1.sparse_to_dense(label, (cifar_main.NUM_CLASSES,), 1)
86
87
88
  return image, label


Shining Sun's avatar
Shining Sun committed
89
90
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
91
92
93
94
95
96

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
97
98
99

  Returns:
    Dictionary of training and eval stats.
100
  """
101
102
  # TODO(tobyboyd): Remove eager flag when tf 1.0 testing ends.
  # Eager is default in tf 2.0 and should not be toggled
103
104
105
106
  if keras_common.is_v2_0():
    keras_common.set_config_v2()
  else:
    config = keras_common.get_config_proto_v1()
107
108
109
110
111
    if flags_obj.enable_eager:
      tf.compat.v1.enable_eager_execution(config=config)
    else:
      sess = tf.Session(config=config)
      tf.keras.backend.set_session(sess)
112

113
114
115
116
117
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

118
119
120
121
122
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
123

124
  if flags_obj.use_synthetic_data:
125
    distribution_utils.set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
126
    input_fn = keras_common.get_synth_input_fn(
127
128
129
130
        height=cifar_main.HEIGHT,
        width=cifar_main.WIDTH,
        num_channels=cifar_main.NUM_CHANNELS,
        num_classes=cifar_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
131
        dtype=flags_core.get_tf_dtype(flags_obj))
132
  else:
133
    distribution_utils.undo_set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
134
135
136
137
138
    input_fn = cifar_main.input_fn

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
139
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
140
141
142
143
144
145
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)

  eval_input_dataset = input_fn(
      is_training=False,
      data_dir=flags_obj.data_dir,
146
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
147
148
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)
149

150
  strategy = distribution_utils.get_distribution_strategy(
151
152
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus)
153

154
  strategy_scope = keras_common.get_strategy_scope(strategy)
Shining Sun's avatar
Shining Sun committed
155
156

  with strategy_scope:
Shining Sun's avatar
Shining Sun committed
157
158
    optimizer = keras_common.get_optimizer()
    model = resnet_cifar_model.resnet56(classes=cifar_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
159

Shining Sun's avatar
Shining Sun committed
160
161
162
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['categorical_accuracy'])
Shining Sun's avatar
Shining Sun committed
163

164
165
  time_callback, tensorboard_callback, lr_callback = keras_common.get_callbacks(
      learning_rate_schedule, cifar_main.NUM_IMAGES['train'])
166

Shining Sun's avatar
Shining Sun committed
167
168
169
170
171
172
173
  train_steps = cifar_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

174
  num_eval_steps = (cifar_main.NUM_IMAGES['validation'] //
175
176
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
177
178
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
179
    tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
180
181
182
    num_eval_steps = None
    validation_data = None

183
  history = model.fit(train_input_dataset,
184
185
186
187
188
189
190
191
192
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
                      callbacks=[
                          time_callback,
                          lr_callback,
                          tensorboard_callback
                      ],
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
193
                      validation_freq=flags_obj.epochs_between_evals,
194
                      verbose=2)
195
  eval_output = None
196
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
197
198
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
199
                                 verbose=2)
200
  stats = keras_common.build_stats(history, eval_output, time_callback)
201
  return stats
202

203
204

def main(_):
205
  with logger.benchmark_context(flags.FLAGS):
206
    return run(flags.FLAGS)
207
208
209


if __name__ == '__main__':
210
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
211
  cifar_main.define_cifar_flags()
Shining Sun's avatar
Shining Sun committed
212
  keras_common.define_keras_flags()
213
  absl_app.run(main)