keras_cifar_main.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_resnet_model
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
    """Callback for Keras models.

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()

  def on_train_begin(self, logs=None):
    self.epoch_times_secs = []
    self.batch_times_secs = []
    self.record_batch = True

  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_time_start = time.time()

  def on_epoch_end(self, epoch, logs=None):
    self.epoch_times_secs.append(time.time() - self.epoch_time_start)

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
      self.batch_time_start = time.time()
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
    n = 100
    if batch % n == 0:
      last_n_batches = time.time() - self.batch_time_start
      examples_per_second = (self._batch_size * n) / last_n_batches
      self.batch_times_secs.append(last_n_batches)
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
                        (batch, last_n_batches, examples_per_second))


80
81
82
83
84
# LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
#     (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
# ]
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(0.1, 91), (0.01, 136), (0.001, 182)
85
86
]

87
88
89
BASE_LEARNING_RATE = 0.1

def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batch_size):
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  """Handles linear scaling rule, gradual warmup, and LR decay.

  The learning rate starts at 0, then it increases linearly per step.
  After 5 epochs we reach the base learning rate (scaled to account
    for batch size).
  After 30, 60 and 80 epochs the learning rate is divided by 10.
  After 90 epochs training stops and the LR is set to 0. This ensures
    that we train for exactly 90 epochs for reproducibility.

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.

  Returns:
    Adjusted learning rate.
  """
106
107
108
109
110
111
112
113
114
115
116
117
  # epoch = current_epoch + float(current_batch) / batches_per_epoch
  # warmup_lr_multiplier, warmup_end_epoch = LR_SCHEDULE[0]
  # if epoch < warmup_end_epoch:
  #   # Learning rate increases linearly per step.
  #   return BASE_LEARNING_RATE * warmup_lr_multiplier * epoch / warmup_end_epoch
  # for mult, start_epoch in LR_SCHEDULE:
  #   if epoch >= start_epoch:
  #     learning_rate = BASE_LEARNING_RATE * mult
  #   else:
  #     break
  # return learning_rate

118
119
  initial_learning_rate = BASE_LEARNING_RATE * batch_size / 128
  learning_rate = initial_learning_rate
120
  for mult, start_epoch in LR_SCHEDULE:
121
122
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    else:
      break
  return learning_rate


class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
143
    self.batch_size = batch_size
144
145
146
147
148
149
150
151
152
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    #if not hasattr(self.model.optimizer, 'learning_rate'):
    #  raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
153
    lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
      tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
      self.prev_lr = lr
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
                   'learning rate to %s.', self.epochs, batch, lr)



def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
  label = tf.sparse_to_dense(label, (cifar_main._NUM_CLASSES,), 1)
  return image, label


def run_cifar_with_keras(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
  """
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

  per_device_batch_size = distribution_utils.per_device_batch_size(
      flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
    synth_input_fn = resnet_run_loop.get_synth_input_fn(
        cifar_main._HEIGHT, cifar_main._WIDTH,
        cifar_main._NUM_CHANNELS, cifar_main._NUM_CLASSES,
        dtype=flags_core.get_tf_dtype(flags_obj))
    train_input_dataset = synth_input_fn(
        True,
        flags_obj.data_dir,
        batch_size=per_device_batch_size,
        height=cifar_main._HEIGHT,
        width=cifar_main._WIDTH,
        num_channels=cifar_main._NUM_CHANNELS,
        num_classes=cifar_main._NUM_CLASSES,
        dtype=dtype)
    eval_input_dataset = synth_input_fn(
        False,
        flags_obj.data_dir,
        batch_size=per_device_batch_size,
        height=cifar_main._HEIGHT,
        width=cifar_main._WIDTH,
        num_channels=cifar_main._NUM_CHANNELS,
        num_classes=cifar_main._NUM_CLASSES,
        dtype=dtype)
  # pylint: enable=protected-access

  else:
    train_input_dataset = cifar_main.input_fn(
          True,
          flags_obj.data_dir,
          batch_size=per_device_batch_size,
          num_epochs=flags_obj.train_epochs,
          parse_record_fn=parse_record_keras)

    eval_input_dataset = cifar_main.input_fn(
          False,
          flags_obj.data_dir,
          batch_size=per_device_batch_size,
          num_epochs=flags_obj.train_epochs,
          parse_record_fn=parse_record_keras)


  # Use Keras ResNet50 applications model and native keras APIs
  # initialize RMSprop optimizer
  # TODO(anjalisridhar): Move to using MomentumOptimizer.
  # opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
  # I am setting an initial LR of 0.001 since this will be reset
  # at the beginning of the training loop.
  opt = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)

  # TF Optimizer:
  # opt = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9)
  
  strategy = distribution_utils.get_distribution_strategy(
      num_gpus=flags_obj.num_gpus)

  model = keras_resnet_model.ResNet56(input_shape=(32, 32, 3),
                                       include_top=True,
                                       classes=cifar_main._NUM_CLASSES,
                                       weights=None)
    

  loss = 'categorical_crossentropy'
  accuracy = 'categorical_accuracy'
 
  model.compile(loss=loss,
                optimizer=opt,
                metrics=[accuracy],
                distribute=strategy)

  steps_per_epoch = cifar_main._NUM_IMAGES['train'] // flags_obj.batch_size

  time_callback = TimeHistory(flags_obj.batch_size)

  tesorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir=flags_obj.model_dir)
277
    #update_freq="batch")  # Add this if want per batch logging.
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

  lr_callback = LearningRateBatchScheduler(
    learning_rate_schedule,
    batch_size=flags_obj.batch_size,
    num_images=cifar_main._NUM_IMAGES['train'])
    
  num_eval_steps = (cifar_main._NUM_IMAGES['validation'] //
                  flags_obj.batch_size)
  
  model.fit(train_input_dataset,
            epochs=flags_obj.train_epochs,
            steps_per_epoch=steps_per_epoch,
            callbacks=[
              time_callback,
              lr_callback,
              tesorboard_callback
            ],
            verbose=1)
  
  eval_output = model.evaluate(eval_input_dataset,
                               steps=num_eval_steps,
                               verbose=1)
  print('Test loss:', eval_output[0])

def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_cifar_with_keras(flags.FLAGS)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.DEBUG)
  cifar_main.define_cifar_flags()
  absl_app.run(main)