keras_cifar_main.py 6.52 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
31
32
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils


33
34
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
35
36
]

37

38
39
40
41
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
42
  """Handles linear scaling rule and LR decay.
43

44
45
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
46
47
48
49

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
50
51
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
52
53
54
55

  Returns:
    Adjusted learning rate.
  """
Shining Sun's avatar
Shining Sun committed
56
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
57
  learning_rate = initial_learning_rate
58
  for mult, start_epoch in LR_SCHEDULE:
59
60
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
61
62
63
64
65
66
67
68
69
70
71
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

Shining Sun's avatar
Shining Sun committed
72
  This method converts the label to one hot to fit the loss function.
73

74
75
76
77
78
79
80
81
82
83
  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
84
  label = tf.sparse_to_dense(label, (cifar_main.NUM_CLASSES,), 1)
85
86
87
  return image, label


Shining Sun's avatar
Shining Sun committed
88
89
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
90
91
92
93
94
95

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
96
97
98

  Returns:
    Dictionary of training and eval stats.
99
  """
100
101
102
  if flags_obj.enable_eager:
    tf.enable_eager_execution()

103
104
105
106
107
108
109
110
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

  per_device_batch_size = distribution_utils.per_device_batch_size(
      flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))

111
112
  tf.keras.backend.set_image_data_format(flags_obj.data_format)

113
  if flags_obj.use_synthetic_data:
Shining Sun's avatar
Shining Sun committed
114
    input_fn = keras_common.get_synth_input_fn(
115
116
117
118
        height=cifar_main.HEIGHT,
        width=cifar_main.WIDTH,
        num_channels=cifar_main.NUM_CHANNELS,
        num_classes=cifar_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
119
        dtype=flags_core.get_tf_dtype(flags_obj))
120
  else:
Shining Sun's avatar
Shining Sun committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    input_fn = cifar_main.input_fn

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=per_device_batch_size,
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)

  eval_input_dataset = input_fn(
      is_training=False,
      data_dir=flags_obj.data_dir,
      batch_size=per_device_batch_size,
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)
136

137
  strategy = distribution_utils.get_distribution_strategy(
138
      flags_obj.num_gpus, flags_obj.turn_off_distribution_strategy)
139

Shining Sun's avatar
Shining Sun committed
140
141
142
  strategy_scope = keras_common.get_strategy_scope(strategy)

  with strategy_scope:
Shining Sun's avatar
Shining Sun committed
143
144
    optimizer = keras_common.get_optimizer()
    model = resnet_cifar_model.resnet56(classes=cifar_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
145

Shining Sun's avatar
Shining Sun committed
146
147
148
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['categorical_accuracy'])
Shining Sun's avatar
Shining Sun committed
149

150
151
  time_callback, tensorboard_callback, lr_callback = keras_common.get_callbacks(
      learning_rate_schedule, cifar_main.NUM_IMAGES['train'])
152

Shining Sun's avatar
Shining Sun committed
153
154
155
156
157
158
159
  train_steps = cifar_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

160
  num_eval_steps = (cifar_main.NUM_IMAGES['validation'] //
161
162
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
163
164
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
165
    tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
166
167
168
    num_eval_steps = None
    validation_data = None

169
  history = model.fit(train_input_dataset,
170
171
172
173
174
175
176
177
178
179
180
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
                      callbacks=[
                          time_callback,
                          lr_callback,
                          tensorboard_callback
                      ],
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
                      verbose=1)
  eval_output = None
181
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
182
183
184
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
                                 verbose=1)
185
186
  stats = keras_common.build_stats(history, eval_output)
  return stats
187

188
189

def main(_):
190
  with logger.benchmark_context(flags.FLAGS):
Shining Sun's avatar
Shining Sun committed
191
    run(flags.FLAGS)
192
193
194


if __name__ == '__main__':
195
  tf.logging.set_verbosity(tf.logging.INFO)
196
  cifar_main.define_cifar_flags()
Shining Sun's avatar
Shining Sun committed
197
  keras_common.define_keras_flags()
198
  absl_app.run(main)