keras_cifar_main.py 7.24 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
31
32
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils


33
34
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
35
36
]

37

38
39
40
41
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
42
  """Handles linear scaling rule and LR decay.
43

44
45
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
46
47
48
49

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
50
51
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
52
53
54
55

  Returns:
    Adjusted learning rate.
  """
56
  del current_batch, batches_per_epoch  # not used
Shining Sun's avatar
Shining Sun committed
57
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
58
  learning_rate = initial_learning_rate
59
  for mult, start_epoch in LR_SCHEDULE:
60
61
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
62
63
64
65
66
67
68
69
70
71
72
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

Shining Sun's avatar
Shining Sun committed
73
  This method converts the label to one hot to fit the loss function.
74

75
76
77
78
79
80
81
82
83
84
  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
85
  label = tf.compat.v1.sparse_to_dense(label, (cifar_main.NUM_CLASSES,), 1)
86
87
88
  return image, label


Shining Sun's avatar
Shining Sun committed
89
90
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
91
92
93
94
95
96

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
97
98
99

  Returns:
    Dictionary of training and eval stats.
100
  """
101
  config = keras_common.get_config_proto()
102
103
  # TODO(tobyboyd): Remove eager flag when tf 1.0 testing ends.
  # Eager is default in tf 2.0 and should not be toggled
104
105
106
107
108
109
110
  if not keras_common.is_v2_0():
    if flags_obj.enable_eager:
      tf.compat.v1.enable_eager_execution(config=config)
    else:
      sess = tf.Session(config=config)
      tf.keras.backend.set_session(sess)
  # TODO(haoyuzhang): Set config properly in TF2.0 when the config API is ready.
111

112
113
114
115
116
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

117
118
119
120
121
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
122

123
  if flags_obj.use_synthetic_data:
124
    distribution_utils.set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
125
    input_fn = keras_common.get_synth_input_fn(
126
127
128
129
        height=cifar_main.HEIGHT,
        width=cifar_main.WIDTH,
        num_channels=cifar_main.NUM_CHANNELS,
        num_classes=cifar_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
130
        dtype=flags_core.get_tf_dtype(flags_obj))
131
  else:
132
    distribution_utils.undo_set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
133
134
135
136
137
    input_fn = cifar_main.input_fn

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
138
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
139
140
141
142
143
144
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)

  eval_input_dataset = input_fn(
      is_training=False,
      data_dir=flags_obj.data_dir,
145
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
146
147
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)
148

149
  strategy = distribution_utils.get_distribution_strategy(
150
151
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus)
152

Shining Sun's avatar
Shining Sun committed
153
  strategy_scope = distribution_utils.MaybeDistributionScope(strategy)
Shining Sun's avatar
Shining Sun committed
154
155

  with strategy_scope:
Shining Sun's avatar
Shining Sun committed
156
157
    optimizer = keras_common.get_optimizer()
    model = resnet_cifar_model.resnet56(classes=cifar_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
158

Shining Sun's avatar
Shining Sun committed
159
160
161
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['categorical_accuracy'])
Shining Sun's avatar
Shining Sun committed
162

163
164
  time_callback, tensorboard_callback, lr_callback = keras_common.get_callbacks(
      learning_rate_schedule, cifar_main.NUM_IMAGES['train'])
165

Shining Sun's avatar
Shining Sun committed
166
167
168
169
170
171
172
  train_steps = cifar_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

173
  num_eval_steps = (cifar_main.NUM_IMAGES['validation'] //
174
175
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
176
177
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
178
    tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
179
180
181
    num_eval_steps = None
    validation_data = None

182
  history = model.fit(train_input_dataset,
183
184
185
186
187
188
189
190
191
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
                      callbacks=[
                          time_callback,
                          lr_callback,
                          tensorboard_callback
                      ],
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
192
                      validation_freq=flags_obj.epochs_between_evals,
193
                      verbose=2)
194
  eval_output = None
195
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
196
197
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
198
                                 verbose=2)
199
  stats = keras_common.build_stats(history, eval_output, time_callback)
200
  return stats
201

202
203

def main(_):
204
  with logger.benchmark_context(flags.FLAGS):
205
    return run(flags.FLAGS)
206
207
208


if __name__ == '__main__':
209
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
210
  cifar_main.define_cifar_flags()
Shining Sun's avatar
Shining Sun committed
211
  keras_common.define_keras_flags()
212
  absl_app.run(main)