inputs_test.py 71.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import os
23
import unittest
24
from absl import logging
pkulzc's avatar
pkulzc committed
25
from absl.testing import parameterized
26
import numpy as np
27
import six
28
import tensorflow.compat.v1 as tf
29
30

from object_detection import inputs
31
from object_detection.core import preprocessor
32
33
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
pkulzc's avatar
pkulzc committed
34
from object_detection.utils import test_case
35
36
37
38
39
40
41
from object_detection.utils import test_utils
from object_detection.utils import tf_version

if six.PY2:
  import mock  # pylint: disable=g-import-not-at-top
else:
  from unittest import mock  # pylint: disable=g-import-not-at-top, g-importing-member
42
43
44
45
46
47

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
Zhichao Lu's avatar
Zhichao Lu committed
48
49
50
51
52
53
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'samples/configs/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/pet_label_map.pbtxt')
  data_path = os.path.join(tf.resource_loader.get_data_files_path(),
                           'test_data/pets_examples.record')
54
  configs = config_util.get_configs_from_pipeline_file(fname)
55
56
57
58
59
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
60
  return config_util.merge_external_params_with_configs(
61
      configs, kwargs_dict=override_dict)
62
63


64
def _get_configs_for_model_sequence_example(model_name, frame_index=-1):
65
66
67
68
69
70
71
72
73
74
75
76
  """Returns configurations for model."""
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'test_data/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/snapshot_serengeti_label_map.pbtxt')
  data_path = os.path.join(
      tf.resource_loader.get_data_files_path(),
      'test_data/snapshot_serengeti_sequence_examples.record')
  configs = config_util.get_configs_from_pipeline_file(fname)
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
77
78
      'label_map_path': label_map_path,
      'frame_index': frame_index
79
80
81
82
83
  }
  return config_util.merge_external_params_with_configs(
      configs, kwargs_dict=override_dict)


84
85
86
87
88
89
90
91
92
def _make_initializable_iterator(dataset):
  """Creates an iterator, and initializes tables.

  Args:
    dataset: A `tf.data.Dataset` object.

  Returns:
    A `tf.data.Iterator`.
  """
93
  iterator = tf.data.make_initializable_iterator(dataset)
94
95
96
97
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  return iterator


98
99
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only tests under TF2.X.')
class InputFnTest(test_case.TestCase, parameterized.TestCase):
100
101
102
103

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
104
105
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
106
    train_input_fn = inputs.create_train_input_fn(
107
        configs['train_config'], configs['train_input_config'], model_config)
108
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
109

110
    self.assertAllEqual([1, None, None, 3],
111
112
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
113
    self.assertAllEqual([1],
114
115
116
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
117
        [1, 100, 4],
118
119
120
121
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
122
        [1, 100, model_config.faster_rcnn.num_classes],
123
124
125
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
126
127
128
129
130
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
131
132
133
134
135
136
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
  def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    model_config = configs['model']
    configs['train_input_config'].num_additional_channels = 2
    configs['train_config'].retain_original_images = True
    model_config.faster_rcnn.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        configs['train_config'], configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([1, None, None, 5],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertAllEqual(
        [1, None, None, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([1],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [1, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

pkulzc's avatar
pkulzc committed
180
181
182
183
184
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
185
186
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
187
188
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
pkulzc's avatar
pkulzc committed
189
190
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
191
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
192
        eval_config, configs['eval_input_configs'][0], model_config)
193
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
194
    self.assertAllEqual([eval_batch_size, None, None, 3],
195
196
197
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
198
        [eval_batch_size, None, None, 3],
199
200
201
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
202
203
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
204
205
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
206
        [eval_batch_size, 100, 4],
207
208
209
210
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
211
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
212
213
214
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
215
    self.assertAllEqual(
216
217
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
218
219
    self.assertEqual(
        tf.float32,
220
        labels[fields.InputDataFields.groundtruth_weights].dtype)
221
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
222
        [eval_batch_size, 100],
223
224
225
226
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
227
        [eval_batch_size, 100],
228
229
230
231
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
232
        [eval_batch_size, 100],
233
234
235
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
  def test_context_rcnn_resnet50_train_input_with_sequence_example(
      self, train_batch_size=8):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap')
    model_config = configs['model']
    train_config = configs['train_config']
    train_config.batch_size = train_batch_size
    train_input_fn = inputs.create_train_input_fn(
        train_config, configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([train_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([train_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

  def test_context_rcnn_resnet50_eval_input_with_sequence_example(
      self, eval_batch_size=8):
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap')
    model_config = configs['model']
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 640, 640, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_weights].dtype)

316
  def test_context_rcnn_resnet50_train_input_with_sequence_example_frame_index(
317
      self, train_batch_size=8):
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap', frame_index=2)
    model_config = configs['model']
    train_config = configs['train_config']
    train_config.batch_size = train_batch_size
    train_input_fn = inputs.create_train_input_fn(
        train_config, configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([train_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([train_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
338
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
339
340
341
342
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
343
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
344
345
346
347
    self.assertAllEqual(
        [train_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
348
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
349
350
351
352
353
354
355
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

356
357
358
  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
359
360
    model_config = configs['model']
    model_config.ssd.num_classes = 37
361
362
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
363
        configs['train_config'], configs['train_input_config'], model_config)
364
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
365
366
367
368
369
370
371
372
373
374
375
376
377

    self.assertAllEqual([batch_size, 300, 300, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [batch_size],
        labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
    self.assertAllEqual(
378
        [batch_size, 100, 4],
379
380
381
382
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
383
        [batch_size, 100, model_config.ssd.num_classes],
384
385
386
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
387
    self.assertAllEqual(
388
        [batch_size, 100],
389
        labels[
390
            fields.InputDataFields.groundtruth_weights].shape.as_list())
391
392
    self.assertEqual(
        tf.float32,
393
        labels[fields.InputDataFields.groundtruth_weights].dtype)
394

pkulzc's avatar
pkulzc committed
395
396
397
398
399
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
400
401
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
402
403
    model_config = configs['model']
    model_config.ssd.num_classes = 37
pkulzc's avatar
pkulzc committed
404
405
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
406
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
407
        eval_config, configs['eval_input_configs'][0], model_config)
408
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
409
    self.assertAllEqual([eval_batch_size, 300, 300, 3],
410
411
412
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
413
        [eval_batch_size, 300, 300, 3],
414
415
416
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
417
418
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
419
420
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
421
        [eval_batch_size, 100, 4],
422
423
424
425
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
426
        [eval_batch_size, 100, model_config.ssd.num_classes],
427
428
429
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
430
    self.assertAllEqual(
431
        [eval_batch_size, 100],
432
        labels[
433
            fields.InputDataFields.groundtruth_weights].shape.as_list())
434
435
    self.assertEqual(
        tf.float32,
436
        labels[fields.InputDataFields.groundtruth_weights].dtype)
437
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
438
        [eval_batch_size, 100],
439
440
441
442
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
443
        [eval_batch_size, 100],
444
445
446
447
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
448
        [eval_batch_size, 100],
449
450
451
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
452

453
454
  def test_ssd_inceptionV2_eval_input_with_additional_channels(
      self, eval_batch_size=1):
455
    """Tests the eval input function for SSDInceptionV2 with additional channel.
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

    Args:
      eval_batch_size: Batch size for eval set.
    """
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    model_config = configs['model']
    model_config.ssd.num_classes = 37
    configs['eval_input_configs'][0].num_additional_channels = 1
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_config.retain_original_image_additional_channels = True
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 300, 300, 4],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 300, 300, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size, 300, 300, 1], features[
        fields.InputDataFields.image_additional_channels].shape.as_list())
    self.assertEqual(
        tf.uint8,
        features[fields.InputDataFields.image_additional_channels].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.ssd.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(tf.bool,
                     labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.groundtruth_difficult].dtype)

517
518
  def test_predict_input(self):
    """Tests the predict input function."""
519
520
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    predict_input_fn = inputs.create_predict_input_fn(
521
        model_config=configs['model'],
522
        predict_input_config=configs['eval_input_configs'][0])
523
524
    serving_input_receiver = predict_input_fn()

525
    image = serving_input_receiver.features[fields.InputDataFields.image]
526
    receiver_tensors = serving_input_receiver.receiver_tensors[
527
528
        inputs.SERVING_FED_EXAMPLE_KEY]
    self.assertEqual([1, 300, 300, 3], image.shape.as_list())
529
530
531
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

532
533
534
  def test_predict_input_with_additional_channels(self):
    """Tests the predict input function with additional channels."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
535
    configs['eval_input_configs'][0].num_additional_channels = 2
536
537
    predict_input_fn = inputs.create_predict_input_fn(
        model_config=configs['model'],
538
        predict_input_config=configs['eval_input_configs'][0])
539
540
541
542
543
544
545
546
547
548
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features[fields.InputDataFields.image]
    receiver_tensors = serving_input_receiver.receiver_tensors[
        inputs.SERVING_FED_EXAMPLE_KEY]
    # RGB + 2 additional channels = 5 channels.
    self.assertEqual([1, 300, 300, 5], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

549
550
551
  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
552
    configs['model'].ssd.num_classes = 37
553
554
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
555
556
        train_input_config=configs['train_input_config'],
        model_config=configs['model'])
557
558
559
560
561
562
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
563
564
565
566
567
568
569
570
571
572
573
574
    configs['model'].ssd.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_model_config(self):
    """Tests that a TypeError is raised with improper train model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
575
576
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
577
578
        train_input_config=configs['train_input_config'],
        model_config=configs['train_config'])  # Expecting `DetectionModel`.
579
580
581
582
583
584
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
585
    configs['model'].ssd.num_classes = 37
586
587
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
588
        eval_input_config=configs['eval_input_configs'][0],
589
        model_config=configs['model'])
590
591
592
593
594
595
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
596
    configs['model'].ssd.num_classes = 37
597
598
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
599
600
        eval_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
601
602
603
    with self.assertRaises(TypeError):
      eval_input_fn()

604
605
606
607
608
609
  def test_error_with_bad_eval_model_config(self):
    """Tests that a TypeError is raised with improper eval model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
610
        eval_input_config=configs['eval_input_configs'][0],
611
612
613
614
        model_config=configs['eval_config'])  # Expecting `DetectionModel`.
    with self.assertRaises(TypeError):
      eval_input_fn()

615
616
617
618
619
  def test_output_equal_in_replace_empty_string_with_random_number(self):
    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

620
    test_string = b'hello world'
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    feed_dict = {string_placeholder: test_string}

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    self.assertEqual(test_string, out_string)

  def test_output_is_integer_in_replace_empty_string_with_random_number(self):

    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    empty_string = ''
    feed_dict = {string_placeholder: empty_string}
    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

639
640
641
642
643
644
645
    is_integer = True
    try:
      # Test whether out_string is a string which represents an integer, the
      # casting below will throw an error if out_string is not castable to int.
      int(out_string)
    except ValueError:
      is_integer = False
646

647
    self.assertTrue(is_integer)
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

  def test_force_no_resize(self):
    """Tests the functionality of force_no_reisze option."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['eval_config'].force_no_resize = True

    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
        eval_input_config=configs['eval_input_configs'][0],
        model_config=configs['model']
    )
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['train_input_config'],
        model_config=configs['model']
    )

    features_train, _ = _make_initializable_iterator(
        train_input_fn()).get_next()

    features_eval, _ = _make_initializable_iterator(
        eval_input_fn()).get_next()

    images_train, images_eval = features_train['image'], features_eval['image']

    self.assertEqual([1, None, None, 3], images_eval.shape.as_list())
    self.assertEqual([24, 300, 300, 3], images_train.shape.as_list())
675

676

pkulzc's avatar
pkulzc committed
677
class DataAugmentationFnTest(test_case.TestCase):
678
679
680
681
682
683
684
685
686
687
688
689
690

  def test_apply_image_and_box_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.
                                    groundtruth_boxes])
    image, groundtruth_boxes = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]])
705

706
707
708
709
710
711
712
713
714
715
716
717
  def test_apply_image_and_box_augmentation_with_scores(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1.0], np.float32)),
          fields.InputDataFields.groundtruth_weights:
              tf.constant(np.array([0.8], np.float32)),
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_weights])
    (image, groundtruth_boxes,
     groundtruth_classes, groundtruth_weights) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]])
    self.assertAllClose(groundtruth_classes.shape, [1.0])
    self.assertAllClose(groundtruth_weights, [0.8])
740

741
742
743
744
745
746
747
748
749
750
751
  def test_include_masks_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        })
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_instance_masks:
              tf.constant(np.zeros([2, 10, 10], np.uint8))
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.
                                    groundtruth_instance_masks])
    image, masks = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllEqual(masks.shape, [2, 20, 20])
766
767
768
769
770
771
772
773
774
775
776
777
778

  def test_include_keypoints_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes],
              augmented_tensor_dict[fields.InputDataFields.
                                    groundtruth_keypoints])
    image, boxes, keypoints = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllClose(boxes, [[10, 10, 20, 20]])
    self.assertAllClose(keypoints, [[[10, 20], [10, 10]]])
797
798
799
800
801
802
803
804
805
806


def _fake_model_preprocessor_fn(image):
  return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))


def _fake_image_resizer_fn(image, mask):
  return (image, mask, tf.shape(image))


807
808
809
810
811
812
813
814
def _fake_resize50_preprocess_fn(image):
  image = image[0]
  image, shape = preprocessor.resize_to_range(
      image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True)

  return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0)


815
class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase):
816

817
818
819
  def test_combine_additional_channels_if_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
820
821
822
823
824
825
826
    def graph_fn(image, additional_channels):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.image_additional_channels: additional_channels,
          fields.InputDataFields.groundtruth_classes:
              tf.constant([1, 1], tf.int32)
      }
827

828
829
830
831
832
833
834
835
836
837
838
839
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=1)
      out_tensors = input_transformation_fn(tensor_dict=tensor_dict)
      return out_tensors[fields.InputDataFields.image]
    out_image = self.execute_cpu(graph_fn, [image, additional_channels])
    self.assertAllEqual(out_image.dtype, tf.float32)
    self.assertAllEqual(out_image.shape, [4, 4, 5])
    self.assertAllClose(out_image, np.concatenate((image, additional_channels),
                                                  axis=2))
840

pkulzc's avatar
pkulzc committed
841
  def test_use_multiclass_scores_when_present(self):
842
843
844
845
846
847
848
849
850
851
852
853
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).
                                                    astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
                                   np.float32)),
          fields.InputDataFields.multiclass_scores:
              tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32))
      }
pkulzc's avatar
pkulzc committed
854

855
856
857
858
859
860
861
862
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3, use_multiclass_scores=True)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return transformed_inputs[fields.InputDataFields.groundtruth_classes]
    groundtruth_classes = self.execute_cpu(graph_fn, [])
pkulzc's avatar
pkulzc committed
863
864
    self.assertAllClose(
        np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
865
        groundtruth_classes)
pkulzc's avatar
pkulzc committed
866

867
868
  @unittest.skipIf(tf_version.is_tf2(), ('Skipping due to different behaviour '
                                         'in TF 2.X'))
pkulzc's avatar
pkulzc committed
869
  def test_use_multiclass_scores_when_not_present(self):
870
871
872
873
874
875
876
877
878
879
880
881
882
    def graph_fn():
      zero_num_elements = tf.random.uniform([], minval=0, maxval=1,
                                            dtype=tf.int32)
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
                                   np.float32)),
          fields.InputDataFields.multiclass_scores: tf.zeros(zero_num_elements),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32))
      }
pkulzc's avatar
pkulzc committed
883

884
885
886
887
888
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3, use_multiclass_scores=True)
pkulzc's avatar
pkulzc committed
889

890
891
892
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return transformed_inputs[fields.InputDataFields.groundtruth_classes]
    groundtruth_classes = self.execute_cpu(graph_fn, [])
pkulzc's avatar
pkulzc committed
893
894
    self.assertAllClose(
        np.array([[0, 1, 0], [0, 0, 1]], np.float32),
895
        groundtruth_classes)
pkulzc's avatar
pkulzc committed
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
  @parameterized.parameters(
      {'labeled_classes': [1, 2]},
      {'labeled_classes': []},
      {'labeled_classes': [1, -1, 2]}  # -1 denotes an unrecognized class
  )
  def test_use_labeled_classes(self, labeled_classes):

    def compute_fn(image, groundtruth_boxes, groundtruth_classes,
                   groundtruth_labeled_classes):
      tensor_dict = {
          fields.InputDataFields.image:
              image,
          fields.InputDataFields.groundtruth_boxes:
              groundtruth_boxes,
          fields.InputDataFields.groundtruth_classes:
              groundtruth_classes,
          fields.InputDataFields.groundtruth_labeled_classes:
              groundtruth_labeled_classes
      }

      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3)
      return input_transformation_fn(tensor_dict=tensor_dict)

    image = np.random.rand(4, 4, 3).astype(np.float32)
    groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)
    groundtruth_classes = np.array([1, 2], np.int32)
    groundtruth_labeled_classes = np.array(labeled_classes, np.int32)

    transformed_inputs = self.execute_cpu(compute_fn, [
        image, groundtruth_boxes, groundtruth_classes,
        groundtruth_labeled_classes
    ])

    if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]:
      transformed_labeled_classes = [1, 1, 0]
    elif not labeled_classes:
      transformed_labeled_classes = [1, 1, 1]
    else:
      logging.exception('Unexpected labeled_classes %r', labeled_classes)

    self.assertAllEqual(
        np.array(transformed_labeled_classes, np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes])

945
  def test_returns_correct_class_label_encodings(self):
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences])
    (groundtruth_classes, groundtruth_confidences) = self.execute_cpu(graph_fn,
                                                                      [])
    self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]])
969

970
  def test_returns_correct_labels_with_unrecognized_class(self):
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(
                  np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
                           np.float32)),
          fields.InputDataFields.groundtruth_area:
              tf.constant(np.array([.5, .4, .3])),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, -1, 1], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant(
                  np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
                           np.float32)),
          fields.InputDataFields.groundtruth_keypoint_visibilities:
              tf.constant([[True, True], [False, False], [True, True]]),
          fields.InputDataFields.groundtruth_instance_masks:
              tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
          fields.InputDataFields.groundtruth_is_crowd:
              tf.constant([False, True, False]),
          fields.InputDataFields.groundtruth_difficult:
              tf.constant(np.array([0, 0, 1], np.int32))
      }
996

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_area],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences],
              transformed_inputs[fields.InputDataFields.groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_keypoint_visibilities],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_instance_masks],
              transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
              transformed_inputs[fields.InputDataFields.groundtruth_difficult])
    (groundtruth_classes, num_groundtruth_boxes, groundtruth_area,
     groundtruth_confidences, groundtruth_boxes, groundtruth_keypoints,
     groundtruth_keypoint_visibilities, groundtruth_instance_masks,
     groundtruth_is_crowd, groundtruth_difficult) = self.execute_cpu(graph_fn,
                                                                     [])

    self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]])
    self.assertAllEqual(num_groundtruth_boxes, 2)
    self.assertAllClose(groundtruth_area, [.5, .3])
    self.assertAllEqual(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(groundtruth_boxes, [[0, 0, 1, 1], [.5, .5, 1, 1]])
    self.assertAllClose(groundtruth_keypoints, [[[.1, .1]], [[.5, .5]]])
    self.assertAllEqual(groundtruth_keypoint_visibilities,
                        [[True, True], [True, True]])
    self.assertAllEqual(groundtruth_instance_masks.shape, [2, 4, 4])
    self.assertAllEqual(groundtruth_is_crowd, [False, False])
    self.assertAllEqual(groundtruth_difficult, [0, 1])
1034

1035
  def test_returns_correct_merged_boxes(self):
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1046

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          merge_multiple_boxes=True)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences],
              transformed_inputs[fields.InputDataFields.num_groundtruth_boxes])
    (groundtruth_boxes, groundtruth_classes, groundtruth_confidences,
     num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
1062
    self.assertAllClose(
1063
        groundtruth_boxes,
1064
1065
        [[.5, .5, 1., 1.]])
    self.assertAllClose(
1066
        groundtruth_classes,
1067
        [[1, 0, 1]])
1068
    self.assertAllClose(
1069
        groundtruth_confidences,
1070
        [[1, 0, 1]])
1071
    self.assertAllClose(
1072
        num_groundtruth_boxes,
1073
        1)
1074

1075
  def test_returns_correct_groundtruth_confidences_when_input_present(self):
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32)),
          fields.InputDataFields.groundtruth_confidences:
              tf.constant(np.array([1.0, -1.0], np.float32))
      }
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences])
    groundtruth_classes, groundtruth_confidences = self.execute_cpu(graph_fn,
                                                                    [])
1099
    self.assertAllClose(
1100
        groundtruth_classes,
1101
1102
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
1103
        groundtruth_confidences,
1104
1105
        [[0, 0, 1], [-1, 0, 0]])

1106
  def test_returns_resized_masks(self):
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_instance_masks:
              tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32)),
          fields.InputDataFields.original_image_spatial_shape:
              tf.constant(np.array([4, 4], np.int32))
      }
1118

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
      def fake_image_resizer_fn(image, masks=None):
        resized_image = tf.image.resize_images(image, [8, 8])
        results = [resized_image]
        if masks is not None:
          resized_masks = tf.transpose(
              tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
              [2, 0, 1])
          results.append(resized_masks)
        results.append(tf.shape(resized_image))
        return results

      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=fake_image_resizer_fn,
          num_classes=num_classes,
          retain_original_image=True)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.original_image],
              transformed_inputs[fields.InputDataFields.
                                 original_image_spatial_shape],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_instance_masks])
    (original_image, original_image_shape,
     groundtruth_instance_masks) = self.execute_cpu(graph_fn, [])
    self.assertEqual(original_image.dtype, np.uint8)
    self.assertAllEqual(original_image_shape, [4, 4])
    self.assertAllEqual(original_image.shape, [8, 8, 3])
    self.assertAllEqual(groundtruth_instance_masks.shape, [2, 8, 8])
1149
1150
1151

  def test_applies_model_preprocess_fn_to_image_tensor(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
1152
1153
1154
1155
1156
1157
    def graph_fn(image):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1158

1159
1160
      def fake_model_preprocessor_fn(image):
        return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))
1161

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.image],
              transformed_inputs[fields.InputDataFields.true_image_shape])
    image, true_image_shape = self.execute_cpu(graph_fn, [np_image])
    self.assertAllClose(image, np_image / 255.)
    self.assertAllClose(true_image_shape, [4, 4, 3])
1174
1175
1176

  def test_applies_data_augmentation_fn_to_tensor_dict(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
1177
1178
1179
1180
1181
1182
    def graph_fn(image):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1183

1184
1185
      def add_one_data_augmentation_fn(tensor_dict):
        return {key: value + 1 for key, value in tensor_dict.items()}
1186

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
      num_classes = 4
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          data_augmentation_fn=add_one_data_augmentation_fn)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.image],
              transformed_inputs[fields.InputDataFields.groundtruth_classes])
    image, groundtruth_classes = self.execute_cpu(graph_fn, [np_image])
    self.assertAllEqual(image, np_image + 1)
    self.assertAllEqual(
        groundtruth_classes,
1201
1202
1203
1204
        [[0, 0, 0, 1], [0, 1, 0, 0]])

  def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
1205
1206
1207
1208
1209
1210
    def graph_fn(image):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1211

1212
1213
      def mul_two_model_preprocessor_fn(image):
        return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
1214

1215
1216
1217
      def add_five_to_image_data_augmentation_fn(tensor_dict):
        tensor_dict[fields.InputDataFields.image] += 5
        return tensor_dict
1218

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
      num_classes = 4
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=mul_two_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          data_augmentation_fn=add_five_to_image_data_augmentation_fn)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return transformed_inputs[fields.InputDataFields.image]
    image = self.execute_cpu(graph_fn, [np_image])
    self.assertAllEqual(image, (np_image + 5) * 2)
1230

1231
  def test_resize_with_padding(self):
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]),
      }
1244

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_keypoints])
    groundtruth_boxes, groundtruth_keypoints = self.execute_cpu(graph_fn, [])
1255
    self.assertAllClose(
1256
        groundtruth_boxes,
1257
1258
        [[.5, .25, 1., .5], [.0, .0, .5, .25]])
    self.assertAllClose(
1259
        groundtruth_keypoints,
1260
1261
1262
        [[[.1, .1]], [[.3, .2]]])

  def test_groundtruth_keypoint_weights(self):
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                           [[0.5, 0.6], [0.7, 0.8]]]),
          fields.InputDataFields.groundtruth_keypoint_visibilities:
              tf.constant([[True, False], [True, True]]),
      }
1278

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
      num_classes = 3
      keypoint_type_weight = [1.0, 2.0]
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          keypoint_type_weight=keypoint_type_weight)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_keypoint_weights])

    groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu(
        graph_fn, [])
1294
    self.assertAllClose(
1295
        groundtruth_keypoints,
1296
1297
1298
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
1299
        groundtruth_keypoint_weights,
1300
1301
1302
        [[1.0, 0.0], [1.0, 2.0]])

  def test_groundtruth_keypoint_weights_default(self):
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                           [[0.5, 0.6], [0.7, 0.8]]]),
      }
1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_keypoint_weights])
    groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu(
        graph_fn, [])
1329
    self.assertAllClose(
1330
        groundtruth_keypoints,
1331
1332
1333
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
1334
        groundtruth_keypoint_weights,
1335
        [[1.0, 1.0], [1.0, 1.0]])
1336

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
  def test_groundtruth_dense_pose(self):
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_dp_num_points:
              tf.constant([0, 2], dtype=tf.int32),
          fields.InputDataFields.groundtruth_dp_part_ids:
              tf.constant([[0, 0], [4, 23]], dtype=tf.int32),
          fields.InputDataFields.groundtruth_dp_surface_coords:
              tf.constant([[[0., 0., 0., 0.,], [0., 0., 0., 0.,]],
                           [[0.1, 0.2, 0.3, 0.4,], [0.6, 0.8, 0.6, 0.7,]]],
                          dtype=tf.float32),
      }

      num_classes = 1
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      transformed_dp_num_points = transformed_inputs[
          fields.InputDataFields.groundtruth_dp_num_points]
      transformed_dp_part_ids = transformed_inputs[
          fields.InputDataFields.groundtruth_dp_part_ids]
      transformed_dp_surface_coords = transformed_inputs[
          fields.InputDataFields.groundtruth_dp_surface_coords]
      return (transformed_dp_num_points, transformed_dp_part_ids,
              transformed_dp_surface_coords)

    dp_num_points, dp_part_ids, dp_surface_coords = self.execute_cpu(
        graph_fn, [])
    self.assertAllEqual(dp_num_points, [0, 2])
    self.assertAllEqual(dp_part_ids, [[0, 0], [4, 23]])
    self.assertAllClose(
        dp_surface_coords,
        [[[0., 0., 0., 0.,], [0., 0., 0., 0.,]],
         [[0.1, 0.1, 0.3, 0.4,], [0.6, 0.4, 0.6, 0.7,]]])

1382

pkulzc's avatar
pkulzc committed
1383
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
1384
1385
1386
1387

  def test_pad_images_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1388
            tf.random.uniform([3, 3, 3]),
1389
        fields.InputDataFields.groundtruth_boxes:
1390
            tf.random.uniform([2, 4]),
1391
        fields.InputDataFields.groundtruth_classes:
1392
            tf.random.uniform([2, 3], minval=0, maxval=2, dtype=tf.int32),
pkulzc's avatar
pkulzc committed
1393
        fields.InputDataFields.true_image_shape:
1394
            tf.constant([3, 3, 3]),
pkulzc's avatar
pkulzc committed
1395
        fields.InputDataFields.original_image_spatial_shape:
1396
            tf.constant([3, 3])
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.true_image_shape]
        .shape.as_list(), [3])
pkulzc's avatar
pkulzc committed
1410
1411
1412
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
        .shape.as_list(), [2])
1413
1414
1415
1416
1417
1418
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])
1419
1420

  def test_clip_boxes_and_classes(self):
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
    def graph_fn():
      input_tensor_dict = {
          fields.InputDataFields.groundtruth_boxes:
              tf.random.uniform([5, 4]),
          fields.InputDataFields.groundtruth_classes:
              tf.random.uniform([2, 3], maxval=10, dtype=tf.int32),
          fields.InputDataFields.num_groundtruth_boxes:
              tf.constant(5)
      }
      padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])
      return (padded_tensor_dict[fields.InputDataFields.groundtruth_boxes],
              padded_tensor_dict[fields.InputDataFields.groundtruth_classes],
              padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes])
    (groundtruth_boxes, groundtruth_classes,
     num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(groundtruth_boxes.shape, [3, 4])
    self.assertAllEqual(groundtruth_classes.shape, [3, 3])
    self.assertEqual(num_groundtruth_boxes, 3)
1443
1444
1445
1446

  def test_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1447
            test_utils.image_with_dynamic_shape(4, 3, 5),
1448
        fields.InputDataFields.image_additional_channels:
1449
            test_utils.image_with_dynamic_shape(4, 3, 2),
1450
1451
1452
1453
1454
1455
1456
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

1457
1458
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1459
1460
1461
1462
1463
1464
1465
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 5])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1466
1467
1468
  def test_images_and_additional_channels_errors(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1469
            test_utils.image_with_dynamic_shape(10, 10, 3),
1470
        fields.InputDataFields.image_additional_channels:
1471
            test_utils.image_with_dynamic_shape(10, 10, 2),
1472
        fields.InputDataFields.original_image:
1473
            test_utils.image_with_dynamic_shape(10, 10, 3),
1474
1475
1476
1477
1478
1479
1480
1481
    }
    with self.assertRaises(ValueError):
      _ = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])

1482
1483
1484
  def test_gray_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1485
            test_utils.image_with_dynamic_shape(4, 4, 1),
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 1])

  def test_gray_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1500
            test_utils.image_with_dynamic_shape(4, 4, 3),
1501
        fields.InputDataFields.image_additional_channels:
1502
            test_utils.image_with_dynamic_shape(4, 4, 2),
1503
    }
1504
1505
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1519
  def test_keypoints(self):
1520
1521
1522
    keypoints = test_utils.keypoints_with_dynamic_shape(10, 16, 4)
    visibilities = tf.cast(tf.random.uniform(tf.shape(keypoints)[:-1], minval=0,
                                             maxval=2, dtype=tf.int32), tf.bool)
1523
1524
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_keypoints:
1525
            test_utils.keypoints_with_dynamic_shape(10, 16, 4),
1526
        fields.InputDataFields.groundtruth_keypoint_visibilities:
1527
            visibilities
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
        .shape.as_list(), [3, 16, 4])
    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.groundtruth_keypoint_visibilities]
        .shape.as_list(), [3, 16])

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
  def test_dense_pose(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_dp_num_points:
            tf.constant([0, 2], dtype=tf.int32),
        fields.InputDataFields.groundtruth_dp_part_ids:
            tf.constant([[0, 0], [4, 23]], dtype=tf.int32),
        fields.InputDataFields.groundtruth_dp_surface_coords:
            tf.constant([[[0., 0., 0., 0.,], [0., 0., 0., 0.,]],
                         [[0.1, 0.2, 0.3, 0.4,], [0.6, 0.8, 0.6, 0.7,]]],
                        dtype=tf.float32),
    }

    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=1,
        spatial_image_shape=[128, 128],
        max_dp_points=200)

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_dp_num_points]
        .shape.as_list(), [3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids]
        .shape.as_list(), [3, 200])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_dp_surface_coords]
        .shape.as_list(), [3, 200, 4])

1572
1573
1574
1575
  def test_context_features(self):
    context_memory_size = 8
    context_feature_length = 10
    max_num_context_features = 20
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
    def graph_fn():
      input_tensor_dict = {
          fields.InputDataFields.context_features:
              tf.ones([context_memory_size, context_feature_length]),
          fields.InputDataFields.context_feature_length:
              tf.constant(context_feature_length)
      }
      padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6],
          max_num_context_features=max_num_context_features,
          context_feature_length=context_feature_length)
1590

1591
1592
1593
1594
1595
      self.assertAllEqual(
          padded_tensor_dict[
              fields.InputDataFields.context_features].shape.as_list(),
          [max_num_context_features, context_feature_length])
      return padded_tensor_dict[fields.InputDataFields.valid_context_size]
1596

1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
    valid_context_size = self.execute_cpu(graph_fn, [])
    self.assertEqual(valid_context_size, context_memory_size)


class NegativeSizeTest(test_case.TestCase):
  """Test for inputs and related funcitons."""

  def test_negative_size_error(self):
    """Test that error is raised for negative size boxes."""

    def graph_fn():
      tensors = {
          fields.InputDataFields.image: tf.zeros((128, 128, 3)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant([1, 1], tf.int32),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant([[0.5, 0.5, 0.4, 0.5]], tf.float32)
1614
      }
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
      tensors = inputs.transform_input_data(
          tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn,
          num_classes=10)
      return tensors[fields.InputDataFields.groundtruth_boxes]
    with self.assertRaises(tf.errors.InvalidArgumentError):
      self.execute_cpu(graph_fn, [])

  def test_negative_size_no_assert(self):
    """Test that negative size boxes are filtered out without assert.

    This test simulates the behaviour when we run on TPU and Assert ops are
    not supported.
    """
1628

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
    tensors = {
        fields.InputDataFields.image: tf.zeros((128, 128, 3)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant([1, 1], tf.int32),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant([[0.5, 0.5, 0.4, 0.5], [0.5, 0.5, 0.6, 0.6]],
                        tf.float32)
    }

    with mock.patch.object(tf, 'Assert') as tf_assert:
      tf_assert.return_value = tf.no_op()
      tensors = inputs.transform_input_data(
          tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn,
          num_classes=10)

      self.assertAllClose(tensors[fields.InputDataFields.groundtruth_boxes],
                          [[0.5, 0.5, 0.6, 0.6]])
1646

1647

1648
1649
if __name__ == '__main__':
  tf.test.main()