inputs_test.py 62.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import os
23
from absl import logging
pkulzc's avatar
pkulzc committed
24
from absl.testing import parameterized
25

26
import numpy as np
27
import tensorflow.compat.v1 as tf
28
29

from object_detection import inputs
30
from object_detection.core import preprocessor
31
32
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
pkulzc's avatar
pkulzc committed
33
from object_detection.utils import test_case
34
35
36
37
38
39

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
Zhichao Lu's avatar
Zhichao Lu committed
40
41
42
43
44
45
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'samples/configs/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/pet_label_map.pbtxt')
  data_path = os.path.join(tf.resource_loader.get_data_files_path(),
                           'test_data/pets_examples.record')
46
  configs = config_util.get_configs_from_pipeline_file(fname)
47
48
49
50
51
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
52
  return config_util.merge_external_params_with_configs(
53
      configs, kwargs_dict=override_dict)
54
55


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def _get_configs_for_model_sequence_example(model_name):
  """Returns configurations for model."""
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'test_data/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/snapshot_serengeti_label_map.pbtxt')
  data_path = os.path.join(
      tf.resource_loader.get_data_files_path(),
      'test_data/snapshot_serengeti_sequence_examples.record')
  configs = config_util.get_configs_from_pipeline_file(fname)
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
  return config_util.merge_external_params_with_configs(
      configs, kwargs_dict=override_dict)


75
76
77
78
79
80
81
82
83
def _make_initializable_iterator(dataset):
  """Creates an iterator, and initializes tables.

  Args:
    dataset: A `tf.data.Dataset` object.

  Returns:
    A `tf.data.Iterator`.
  """
84
  iterator = tf.data.make_initializable_iterator(dataset)
85
86
87
88
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  return iterator


pkulzc's avatar
pkulzc committed
89
class InputsTest(test_case.TestCase, parameterized.TestCase):
90
91
92
93

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
94
95
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
96
    train_input_fn = inputs.create_train_input_fn(
97
        configs['train_config'], configs['train_input_config'], model_config)
98
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
99

100
    self.assertAllEqual([1, None, None, 3],
101
102
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
103
    self.assertAllEqual([1],
104
105
106
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
107
        [1, 100, 4],
108
109
110
111
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
112
        [1, 100, model_config.faster_rcnn.num_classes],
113
114
115
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
116
117
118
119
120
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
121
122
123
124
125
126
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    model_config = configs['model']
    configs['train_input_config'].num_additional_channels = 2
    configs['train_config'].retain_original_images = True
    model_config.faster_rcnn.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        configs['train_config'], configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([1, None, None, 5],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertAllEqual(
        [1, None, None, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([1],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [1, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

pkulzc's avatar
pkulzc committed
170
171
172
173
174
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
175
176
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
177
178
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
pkulzc's avatar
pkulzc committed
179
180
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
181
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
182
        eval_config, configs['eval_input_configs'][0], model_config)
183
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
184
    self.assertAllEqual([eval_batch_size, None, None, 3],
185
186
187
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
188
        [eval_batch_size, None, None, 3],
189
190
191
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
192
193
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
194
195
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
196
        [eval_batch_size, 100, 4],
197
198
199
200
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
201
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
202
203
204
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
205
    self.assertAllEqual(
206
207
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
208
209
    self.assertEqual(
        tf.float32,
210
        labels[fields.InputDataFields.groundtruth_weights].dtype)
211
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
212
        [eval_batch_size, 100],
213
214
215
216
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
217
        [eval_batch_size, 100],
218
219
220
221
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
222
        [eval_batch_size, 100],
223
224
225
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
  def test_context_rcnn_resnet50_train_input_with_sequence_example(
      self, train_batch_size=8):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap')
    model_config = configs['model']
    train_config = configs['train_config']
    train_config.batch_size = train_batch_size
    train_input_fn = inputs.create_train_input_fn(
        train_config, configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([train_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([train_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

  def test_context_rcnn_resnet50_eval_input_with_sequence_example(
      self, eval_batch_size=8):
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap')
    model_config = configs['model']
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 640, 640, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_weights].dtype)

306
307
308
  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
309
310
    model_config = configs['model']
    model_config.ssd.num_classes = 37
311
312
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
313
        configs['train_config'], configs['train_input_config'], model_config)
314
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
315
316
317
318
319
320
321
322
323
324
325
326
327

    self.assertAllEqual([batch_size, 300, 300, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [batch_size],
        labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
    self.assertAllEqual(
328
        [batch_size, 100, 4],
329
330
331
332
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
333
        [batch_size, 100, model_config.ssd.num_classes],
334
335
336
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
337
    self.assertAllEqual(
338
        [batch_size, 100],
339
        labels[
340
            fields.InputDataFields.groundtruth_weights].shape.as_list())
341
342
    self.assertEqual(
        tf.float32,
343
        labels[fields.InputDataFields.groundtruth_weights].dtype)
344

pkulzc's avatar
pkulzc committed
345
346
347
348
349
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
350
351
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
352
353
    model_config = configs['model']
    model_config.ssd.num_classes = 37
pkulzc's avatar
pkulzc committed
354
355
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
356
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
357
        eval_config, configs['eval_input_configs'][0], model_config)
358
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
359
    self.assertAllEqual([eval_batch_size, 300, 300, 3],
360
361
362
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
363
        [eval_batch_size, 300, 300, 3],
364
365
366
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
367
368
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
369
370
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
371
        [eval_batch_size, 100, 4],
372
373
374
375
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
376
        [eval_batch_size, 100, model_config.ssd.num_classes],
377
378
379
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
380
    self.assertAllEqual(
381
        [eval_batch_size, 100],
382
        labels[
383
            fields.InputDataFields.groundtruth_weights].shape.as_list())
384
385
    self.assertEqual(
        tf.float32,
386
        labels[fields.InputDataFields.groundtruth_weights].dtype)
387
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
388
        [eval_batch_size, 100],
389
390
391
392
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
393
        [eval_batch_size, 100],
394
395
396
397
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
398
        [eval_batch_size, 100],
399
400
401
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
  def test_ssd_inceptionV2_eval_input_with_additional_channels(
      self, eval_batch_size=1):
    """Tests the eval input function for SSDInceptionV2 with additional channels.

    Args:
      eval_batch_size: Batch size for eval set.
    """
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    model_config = configs['model']
    model_config.ssd.num_classes = 37
    configs['eval_input_configs'][0].num_additional_channels = 1
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_config.retain_original_image_additional_channels = True
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 300, 300, 4],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 300, 300, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size, 300, 300, 1], features[
        fields.InputDataFields.image_additional_channels].shape.as_list())
    self.assertEqual(
        tf.uint8,
        features[fields.InputDataFields.image_additional_channels].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.ssd.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(tf.bool,
                     labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.groundtruth_difficult].dtype)

467
468
  def test_predict_input(self):
    """Tests the predict input function."""
469
470
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    predict_input_fn = inputs.create_predict_input_fn(
471
        model_config=configs['model'],
472
        predict_input_config=configs['eval_input_configs'][0])
473
474
    serving_input_receiver = predict_input_fn()

475
    image = serving_input_receiver.features[fields.InputDataFields.image]
476
    receiver_tensors = serving_input_receiver.receiver_tensors[
477
478
        inputs.SERVING_FED_EXAMPLE_KEY]
    self.assertEqual([1, 300, 300, 3], image.shape.as_list())
479
480
481
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

482
483
484
  def test_predict_input_with_additional_channels(self):
    """Tests the predict input function with additional channels."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
485
    configs['eval_input_configs'][0].num_additional_channels = 2
486
487
    predict_input_fn = inputs.create_predict_input_fn(
        model_config=configs['model'],
488
        predict_input_config=configs['eval_input_configs'][0])
489
490
491
492
493
494
495
496
497
498
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features[fields.InputDataFields.image]
    receiver_tensors = serving_input_receiver.receiver_tensors[
        inputs.SERVING_FED_EXAMPLE_KEY]
    # RGB + 2 additional channels = 5 channels.
    self.assertEqual([1, 300, 300, 5], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

499
500
501
  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
502
    configs['model'].ssd.num_classes = 37
503
504
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
505
506
        train_input_config=configs['train_input_config'],
        model_config=configs['model'])
507
508
509
510
511
512
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
513
514
515
516
517
518
519
520
521
522
523
524
    configs['model'].ssd.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_model_config(self):
    """Tests that a TypeError is raised with improper train model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
525
526
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
527
528
        train_input_config=configs['train_input_config'],
        model_config=configs['train_config'])  # Expecting `DetectionModel`.
529
530
531
532
533
534
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
535
    configs['model'].ssd.num_classes = 37
536
537
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
538
        eval_input_config=configs['eval_input_configs'][0],
539
        model_config=configs['model'])
540
541
542
543
544
545
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
546
    configs['model'].ssd.num_classes = 37
547
548
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
549
550
        eval_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
551
552
553
    with self.assertRaises(TypeError):
      eval_input_fn()

554
555
556
557
558
559
  def test_error_with_bad_eval_model_config(self):
    """Tests that a TypeError is raised with improper eval model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
560
        eval_input_config=configs['eval_input_configs'][0],
561
562
563
564
        model_config=configs['eval_config'])  # Expecting `DetectionModel`.
    with self.assertRaises(TypeError):
      eval_input_fn()

565
566
567
568
569
  def test_output_equal_in_replace_empty_string_with_random_number(self):
    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

570
    test_string = b'hello world'
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    feed_dict = {string_placeholder: test_string}

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    self.assertEqual(test_string, out_string)

  def test_output_is_integer_in_replace_empty_string_with_random_number(self):

    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    empty_string = ''
    feed_dict = {string_placeholder: empty_string}
    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

589
590
591
592
593
594
595
    is_integer = True
    try:
      # Test whether out_string is a string which represents an integer, the
      # casting below will throw an error if out_string is not castable to int.
      int(out_string)
    except ValueError:
      is_integer = False
596

597
    self.assertTrue(is_integer)
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

  def test_force_no_resize(self):
    """Tests the functionality of force_no_reisze option."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['eval_config'].force_no_resize = True

    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
        eval_input_config=configs['eval_input_configs'][0],
        model_config=configs['model']
    )
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['train_input_config'],
        model_config=configs['model']
    )

    features_train, _ = _make_initializable_iterator(
        train_input_fn()).get_next()

    features_eval, _ = _make_initializable_iterator(
        eval_input_fn()).get_next()

    images_train, images_eval = features_train['image'], features_eval['image']

    self.assertEqual([1, None, None, 3], images_eval.shape.as_list())
    self.assertEqual([24, 300, 300, 3], images_train.shape.as_list())
625

626

pkulzc's avatar
pkulzc committed
627
class DataAugmentationFnTest(test_case.TestCase):
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

  def test_apply_image_and_box_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  def test_apply_image_and_box_augmentation_with_scores(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1.0], np.float32)),
679
        fields.InputDataFields.groundtruth_weights:
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
            tf.constant(np.array([0.8], np.float32)),
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_classes],
        [1.0]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[
700
            fields.InputDataFields.groundtruth_weights],
701
702
703
        [0.8]
    )

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
  def test_include_masks_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        })
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.zeros([2, 10, 10], np.uint8))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3])
    self.assertAllEqual(augmented_tensor_dict_out[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20])

  def test_include_keypoints_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints],
        [[[10, 20], [10, 10]]]
    )


def _fake_model_preprocessor_fn(image):
  return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))


def _fake_image_resizer_fn(image, mask):
  return (image, mask, tf.shape(image))


777
778
779
780
781
782
783
784
def _fake_resize50_preprocess_fn(image):
  image = image[0]
  image, shape = preprocessor.resize_to_range(
      image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True)

  return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0)


785
class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase):
786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
  def test_combine_additional_channels_if_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.image_additional_channels:
            tf.constant(additional_channels),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 1], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=1)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].dtype,
                        tf.float32)
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].shape,
                        [4, 4, 5])
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np.concatenate((image, additional_channels), axis=2))

pkulzc's avatar
pkulzc committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
  def test_use_multiclass_scores_when_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.multiclass_scores:
            tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=3, use_multiclass_scores=True)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_classes])

  def test_use_multiclass_scores_when_not_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.multiclass_scores:
            tf.placeholder(tf.float32),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=3, use_multiclass_scores=True)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict),
          feed_dict={
              tensor_dict[fields.InputDataFields.multiclass_scores]:
                  np.array([], dtype=np.float32)
          })

    self.assertAllClose(
        np.array([[0, 1, 0], [0, 0, 1]], np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_classes])

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
  @parameterized.parameters(
      {'labeled_classes': [1, 2]},
      {'labeled_classes': []},
      {'labeled_classes': [1, -1, 2]}  # -1 denotes an unrecognized class
  )
  def test_use_labeled_classes(self, labeled_classes):

    def compute_fn(image, groundtruth_boxes, groundtruth_classes,
                   groundtruth_labeled_classes):
      tensor_dict = {
          fields.InputDataFields.image:
              image,
          fields.InputDataFields.groundtruth_boxes:
              groundtruth_boxes,
          fields.InputDataFields.groundtruth_classes:
              groundtruth_classes,
          fields.InputDataFields.groundtruth_labeled_classes:
              groundtruth_labeled_classes
      }

      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3)
      return input_transformation_fn(tensor_dict=tensor_dict)

    image = np.random.rand(4, 4, 3).astype(np.float32)
    groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)
    groundtruth_classes = np.array([1, 2], np.int32)
    groundtruth_labeled_classes = np.array(labeled_classes, np.int32)

    transformed_inputs = self.execute_cpu(compute_fn, [
        image, groundtruth_boxes, groundtruth_classes,
        groundtruth_labeled_classes
    ])

    if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]:
      transformed_labeled_classes = [1, 1, 0]
    elif not labeled_classes:
      transformed_labeled_classes = [1, 1, 1]
    else:
      logging.exception('Unexpected labeled_classes %r', labeled_classes)

    self.assertAllEqual(
        np.array(transformed_labeled_classes, np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes])

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
  def test_returns_correct_class_label_encodings(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
940
941
942
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
943

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
  def test_returns_correct_labels_with_unrecognized_class(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(
                np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
                         np.float32)),
        fields.InputDataFields.groundtruth_area:
            tf.constant(np.array([.5, .4, .3])),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, -1, 1], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(
                np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
                         np.float32)),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
961
            tf.constant([[True, True], [False, False], [True, True]]),
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_is_crowd:
            tf.constant([False, True, False]),
        fields.InputDataFields.groundtruth_difficult:
            tf.constant(np.array([0, 0, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], 2)
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_area], [.5, .3])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[0, 0, 1, 1], [.5, .5, 1, 1]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[.1, .1]], [[.5, .5]]])
    self.assertAllEqual(
        transformed_inputs[
            fields.InputDataFields.groundtruth_keypoint_visibilities],
999
        [[True, True], [True, True]])
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    self.assertAllEqual(
        transformed_inputs[
            fields.InputDataFields.groundtruth_instance_masks].shape, [2, 4, 4])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
        [False, False])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_difficult],
        [0, 1])

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
  def test_returns_correct_merged_boxes(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        merge_multiple_boxes=True)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[.5, .5, 1., 1.]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[1, 0, 1]])
1037
1038
1039
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[1, 0, 1]])
1040
1041
1042
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
        1)
1043

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
  def test_returns_correct_groundtruth_confidences_when_input_present(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.groundtruth_confidences:
            tf.constant(np.array([1.0, -1.0], np.float32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [-1, 0, 0]])

1072
1073
1074
1075
1076
1077
1078
  def test_returns_resized_masks(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_classes:
pkulzc's avatar
pkulzc committed
1079
1080
1081
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.original_image_spatial_shape:
            tf.constant(np.array([4, 4], np.int32))
1082
    }
1083

1084
    def fake_image_resizer_fn(image, masks=None):
1085
      resized_image = tf.image.resize_images(image, [8, 8])
1086
1087
1088
1089
1090
1091
1092
1093
      results = [resized_image]
      if masks is not None:
        resized_masks = tf.transpose(
            tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
            [2, 0, 1])
        results.append(resized_masks)
      results.append(tf.shape(resized_image))
      return results
1094
1095
1096
1097
1098
1099

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=fake_image_resizer_fn,
1100
1101
        num_classes=num_classes,
        retain_original_image=True)
1102
1103
1104
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
1105
1106
1107
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].dtype, tf.uint8)
    self.assertAllEqual(transformed_inputs[
pkulzc's avatar
pkulzc committed
1108
1109
1110
        fields.InputDataFields.original_image_spatial_shape], [4, 4])
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].shape, [8, 8, 3])
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8])

  def test_applies_model_preprocess_fn_to_image_tensor(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
1122

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    def fake_model_preprocessor_fn(image):
      return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np_image / 255.)
    self.assertAllClose(transformed_inputs[fields.InputDataFields.
                                           true_image_shape],
                        [4, 4, 3])

  def test_applies_data_augmentation_fn_to_tensor_dict(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
1150

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
    def add_one_data_augmentation_fn(tensor_dict):
      return {key: value + 1 for key, value in tensor_dict.items()}

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_one_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        np_image + 1)
    self.assertAllEqual(
        augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 0, 1], [0, 1, 0, 0]])

  def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
1179

1180
1181
    def mul_two_model_preprocessor_fn(image):
      return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
    def add_five_to_image_data_augmentation_fn(tensor_dict):
      tensor_dict[fields.InputDataFields.image] += 5
      return tensor_dict

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=mul_two_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_five_to_image_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        (np_image + 5) * 2)

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
  def test_resize_with_padding(self):

    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                 np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
1212
            tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]),
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_resize50_preprocess_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[.5, .25, 1., .5], [.0, .0, .5, .25]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
        [[[.1, .1]], [[.3, .2]]])

  def test_groundtruth_keypoint_weights(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                 np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                         [[0.5, 0.6], [0.7, 0.8]]]),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.constant([[True, False], [True, True]]),
    }

    num_classes = 3
    keypoint_type_weight = [1.0, 2.0]
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_resize50_preprocess_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        keypoint_type_weight=keypoint_type_weight)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoint_weights],
        [[1.0, 0.0], [1.0, 2.0]])

  def test_groundtruth_keypoint_weights_default(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                 np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                         [[0.5, 0.6], [0.7, 0.8]]]),
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_resize50_preprocess_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoint_weights],
        [[1.0, 1.0], [1.0, 1.0]])
1299

1300

pkulzc's avatar
pkulzc committed
1301
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
1302
1303
1304
1305
1306
1307
1308
1309
1310

  def test_pad_images_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
pkulzc's avatar
pkulzc committed
1311
1312
1313
1314
        fields.InputDataFields.true_image_shape:
            tf.placeholder(tf.int32, [3]),
        fields.InputDataFields.original_image_spatial_shape:
            tf.placeholder(tf.int32, [2])
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.true_image_shape]
        .shape.as_list(), [3])
pkulzc's avatar
pkulzc committed
1328
1329
1330
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
        .shape.as_list(), [2])
1331
1332
1333
1334
1335
1336
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])
1337
1338
1339
1340
1341
1342
1343

  def test_clip_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
1344
1345
        fields.InputDataFields.num_groundtruth_boxes:
            tf.placeholder(tf.int32, [])
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])

    with self.test_session() as sess:
      out_tensor_dict = sess.run(
          padded_tensor_dict,
          feed_dict={
              input_tensor_dict[fields.InputDataFields.groundtruth_boxes]:
                  np.random.rand(5, 4),
              input_tensor_dict[fields.InputDataFields.groundtruth_classes]:
                  np.random.rand(2, 3),
1368
1369
              input_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]:
                  5,
1370
1371
1372
1373
1374
1375
1376
          })

    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes].shape, [3, 4])
    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_classes].shape,
        [3, 3])
1377
1378
1379
    self.assertEqual(
        out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
        3)
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

  def test_do_not_pad_dynamic_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[None, None])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [None, None, 3])

  def test_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1399
            tf.placeholder(tf.float32, [None, None, 5]),
1400
1401
1402
1403
1404
1405
1406
1407
1408
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

1409
1410
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1411
1412
1413
1414
1415
1416
1417
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 5])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
  def test_images_and_additional_channels_errors(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
        fields.InputDataFields.original_image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    with self.assertRaises(ValueError):
      _ = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])

1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
  def test_gray_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 1]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 1])

  def test_gray_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1452
            tf.placeholder(tf.float32, [None, None, 3]),
1453
1454
1455
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
1456
1457
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
  def test_keypoints(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_keypoints:
            tf.placeholder(tf.float32, [None, 16, 4]),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.placeholder(tf.bool, [None, 16]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
        .shape.as_list(), [3, 16, 4])
    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.groundtruth_keypoint_visibilities]
        .shape.as_list(), [3, 16])

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
  def test_context_features(self):
    context_memory_size = 8
    context_feature_length = 10
    max_num_context_features = 20
    input_tensor_dict = {
        fields.InputDataFields.context_features:
            tf.placeholder(tf.float32,
                           [context_memory_size, context_feature_length]),
        fields.InputDataFields.context_feature_length:
            tf.placeholder(tf.float32, [])
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6],
        max_num_context_features=max_num_context_features,
        context_feature_length=context_feature_length)

    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.context_features].shape.as_list(),
        [max_num_context_features, context_feature_length])

    with self.test_session() as sess:
      feed_dict = {
          input_tensor_dict[fields.InputDataFields.context_features]:
              np.ones([context_memory_size, context_feature_length],
                      dtype=np.float32),
          input_tensor_dict[fields.InputDataFields.context_feature_length]:
              context_feature_length
      }
      padded_tensor_dict_out = sess.run(padded_tensor_dict, feed_dict=feed_dict)

    self.assertEqual(
        padded_tensor_dict_out[fields.InputDataFields.valid_context_size],
        context_memory_size)

1530

1531
1532
if __name__ == '__main__':
  tf.test.main()