"docs/get_started/install.md" did not exist on "4f723edd3baf3823eddfb9d6426548daba17c687"
inputs_test.py 38.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import os
pkulzc's avatar
pkulzc committed
23
from absl.testing import parameterized
24

25
import numpy as np
26
27
28
import tensorflow as tf

from object_detection import inputs
29
from object_detection.core import preprocessor
30
31
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
pkulzc's avatar
pkulzc committed
32
from object_detection.utils import test_case
33
34
35
36
37
38

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
Zhichao Lu's avatar
Zhichao Lu committed
39
40
41
42
43
44
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'samples/configs/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/pet_label_map.pbtxt')
  data_path = os.path.join(tf.resource_loader.get_data_files_path(),
                           'test_data/pets_examples.record')
45
  configs = config_util.get_configs_from_pipeline_file(fname)
46
47
48
49
50
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
51
  return config_util.merge_external_params_with_configs(
52
      configs, kwargs_dict=override_dict)
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
def _make_initializable_iterator(dataset):
  """Creates an iterator, and initializes tables.

  Args:
    dataset: A `tf.data.Dataset` object.

  Returns:
    A `tf.data.Iterator`.
  """
  iterator = dataset.make_initializable_iterator()
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  return iterator


pkulzc's avatar
pkulzc committed
69
class InputsTest(test_case.TestCase, parameterized.TestCase):
70
71
72
73

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
74
75
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
76
    train_input_fn = inputs.create_train_input_fn(
77
        configs['train_config'], configs['train_input_config'], model_config)
78
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
79

80
    self.assertAllEqual([1, None, None, 3],
81
82
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
83
    self.assertAllEqual([1],
84
85
86
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
87
        [1, 100, 4],
88
89
90
91
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
92
        [1, 100, model_config.faster_rcnn.num_classes],
93
94
95
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
96
97
98
99
100
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
101
102
103
104
105
106
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)
107

pkulzc's avatar
pkulzc committed
108
109
110
111
112
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
113
114
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
115
116
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
pkulzc's avatar
pkulzc committed
117
118
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
119
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
120
        eval_config, configs['eval_input_configs'][0], model_config)
121
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
122
    self.assertAllEqual([eval_batch_size, None, None, 3],
123
124
125
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
126
        [eval_batch_size, None, None, 3],
127
128
129
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
130
131
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
132
133
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
134
        [eval_batch_size, 100, 4],
135
136
137
138
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
139
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
140
141
142
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
143
    self.assertAllEqual(
144
145
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
146
147
    self.assertEqual(
        tf.float32,
148
        labels[fields.InputDataFields.groundtruth_weights].dtype)
149
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
150
        [eval_batch_size, 100],
151
152
153
154
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
155
        [eval_batch_size, 100],
156
157
158
159
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
160
        [eval_batch_size, 100],
161
162
163
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
164
165
166
167

  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
168
169
    model_config = configs['model']
    model_config.ssd.num_classes = 37
170
171
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
172
        configs['train_config'], configs['train_input_config'], model_config)
173
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
174
175
176
177
178
179
180
181
182
183
184
185
186

    self.assertAllEqual([batch_size, 300, 300, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [batch_size],
        labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
    self.assertAllEqual(
187
        [batch_size, 100, 4],
188
189
190
191
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
192
        [batch_size, 100, model_config.ssd.num_classes],
193
194
195
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
196
    self.assertAllEqual(
197
        [batch_size, 100],
198
        labels[
199
            fields.InputDataFields.groundtruth_weights].shape.as_list())
200
201
    self.assertEqual(
        tf.float32,
202
        labels[fields.InputDataFields.groundtruth_weights].dtype)
203

pkulzc's avatar
pkulzc committed
204
205
206
207
208
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
209
210
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
211
212
    model_config = configs['model']
    model_config.ssd.num_classes = 37
pkulzc's avatar
pkulzc committed
213
214
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
215
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
216
        eval_config, configs['eval_input_configs'][0], model_config)
217
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
218
    self.assertAllEqual([eval_batch_size, 300, 300, 3],
219
220
221
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
222
        [eval_batch_size, 300, 300, 3],
223
224
225
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
226
227
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
228
229
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
230
        [eval_batch_size, 100, 4],
231
232
233
234
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
235
        [eval_batch_size, 100, model_config.ssd.num_classes],
236
237
238
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
239
    self.assertAllEqual(
240
        [eval_batch_size, 100],
241
        labels[
242
            fields.InputDataFields.groundtruth_weights].shape.as_list())
243
244
    self.assertEqual(
        tf.float32,
245
        labels[fields.InputDataFields.groundtruth_weights].dtype)
246
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
247
        [eval_batch_size, 100],
248
249
250
251
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
252
        [eval_batch_size, 100],
253
254
255
256
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
257
        [eval_batch_size, 100],
258
259
260
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
261
262
263

  def test_predict_input(self):
    """Tests the predict input function."""
264
265
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    predict_input_fn = inputs.create_predict_input_fn(
266
        model_config=configs['model'],
267
        predict_input_config=configs['eval_input_configs'][0])
268
269
    serving_input_receiver = predict_input_fn()

270
    image = serving_input_receiver.features[fields.InputDataFields.image]
271
    receiver_tensors = serving_input_receiver.receiver_tensors[
272
273
        inputs.SERVING_FED_EXAMPLE_KEY]
    self.assertEqual([1, 300, 300, 3], image.shape.as_list())
274
275
276
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

277
278
279
  def test_predict_input_with_additional_channels(self):
    """Tests the predict input function with additional channels."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
280
    configs['eval_input_configs'][0].num_additional_channels = 2
281
282
    predict_input_fn = inputs.create_predict_input_fn(
        model_config=configs['model'],
283
        predict_input_config=configs['eval_input_configs'][0])
284
285
286
287
288
289
290
291
292
293
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features[fields.InputDataFields.image]
    receiver_tensors = serving_input_receiver.receiver_tensors[
        inputs.SERVING_FED_EXAMPLE_KEY]
    # RGB + 2 additional channels = 5 channels.
    self.assertEqual([1, 300, 300, 5], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

294
295
296
  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
297
    configs['model'].ssd.num_classes = 37
298
299
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
300
301
        train_input_config=configs['train_input_config'],
        model_config=configs['model'])
302
303
304
305
306
307
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
308
309
310
311
312
313
314
315
316
317
318
319
    configs['model'].ssd.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_model_config(self):
    """Tests that a TypeError is raised with improper train model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
320
321
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
322
323
        train_input_config=configs['train_input_config'],
        model_config=configs['train_config'])  # Expecting `DetectionModel`.
324
325
326
327
328
329
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
330
    configs['model'].ssd.num_classes = 37
331
332
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
333
        eval_input_config=configs['eval_input_configs'][0],
334
        model_config=configs['model'])
335
336
337
338
339
340
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
341
    configs['model'].ssd.num_classes = 37
342
343
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
344
345
        eval_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
346
347
348
    with self.assertRaises(TypeError):
      eval_input_fn()

349
350
351
352
353
354
  def test_error_with_bad_eval_model_config(self):
    """Tests that a TypeError is raised with improper eval model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
355
        eval_input_config=configs['eval_input_configs'][0],
356
357
358
359
        model_config=configs['eval_config'])  # Expecting `DetectionModel`.
    with self.assertRaises(TypeError):
      eval_input_fn()

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  def test_output_equal_in_replace_empty_string_with_random_number(self):
    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    test_string = 'hello world'
    feed_dict = {string_placeholder: test_string}

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    self.assertEqual(test_string, out_string)

  def test_output_is_integer_in_replace_empty_string_with_random_number(self):

    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    empty_string = ''
    feed_dict = {string_placeholder: empty_string}

    tf.set_random_seed(0)

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    # Test whether out_string is a string which represents an integer.
    int(out_string)  # throws an error if out_string is not castable to int.

    self.assertEqual(out_string, '2798129067578209328')

392

pkulzc's avatar
pkulzc committed
393
class DataAugmentationFnTest(test_case.TestCase):
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

  def test_apply_image_and_box_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
  def test_apply_image_and_box_augmentation_with_scores(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1.0], np.float32)),
445
        fields.InputDataFields.groundtruth_weights:
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
            tf.constant(np.array([0.8], np.float32)),
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_classes],
        [1.0]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[
466
            fields.InputDataFields.groundtruth_weights],
467
468
469
        [0.8]
    )

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
  def test_include_masks_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        })
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.zeros([2, 10, 10], np.uint8))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3])
    self.assertAllEqual(augmented_tensor_dict_out[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20])

  def test_include_keypoints_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints],
        [[[10, 20], [10, 10]]]
    )


def _fake_model_preprocessor_fn(image):
  return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))


def _fake_image_resizer_fn(image, mask):
  return (image, mask, tf.shape(image))


pkulzc's avatar
pkulzc committed
543
class DataTransformationFnTest(test_case.TestCase):
544

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
  def test_combine_additional_channels_if_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.image_additional_channels:
            tf.constant(additional_channels),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 1], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=1)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].dtype,
                        tf.float32)
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].shape,
                        [4, 4, 5])
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np.concatenate((image, additional_channels), axis=2))

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  def test_returns_correct_class_label_encodings(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
594
595
596
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

  def test_returns_correct_merged_boxes(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        merge_multiple_boxes=True)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[.5, .5, 1., 1.]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[1, 0, 1]])
625
626
627
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[1, 0, 1]])
628
629
630
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
        1)
631

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
  def test_returns_correct_groundtruth_confidences_when_input_present(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.groundtruth_confidences:
            tf.constant(np.array([1.0, -1.0], np.float32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [-1, 0, 0]])

660
661
662
663
664
665
666
  def test_returns_resized_masks(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_classes:
pkulzc's avatar
pkulzc committed
667
668
669
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.original_image_spatial_shape:
            tf.constant(np.array([4, 4], np.int32))
670
    }
671

672
    def fake_image_resizer_fn(image, masks=None):
673
      resized_image = tf.image.resize_images(image, [8, 8])
674
675
676
677
678
679
680
681
      results = [resized_image]
      if masks is not None:
        resized_masks = tf.transpose(
            tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
            [2, 0, 1])
        results.append(resized_masks)
      results.append(tf.shape(resized_image))
      return results
682
683
684
685
686
687

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=fake_image_resizer_fn,
688
689
        num_classes=num_classes,
        retain_original_image=True)
690
691
692
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
693
694
695
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].dtype, tf.uint8)
    self.assertAllEqual(transformed_inputs[
pkulzc's avatar
pkulzc committed
696
697
698
        fields.InputDataFields.original_image_spatial_shape], [4, 4])
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].shape, [8, 8, 3])
699
700
701
702
703
704
705
706
707
708
709
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8])

  def test_applies_model_preprocess_fn_to_image_tensor(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    def fake_model_preprocessor_fn(image):
      return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np_image / 255.)
    self.assertAllClose(transformed_inputs[fields.InputDataFields.
                                           true_image_shape],
                        [4, 4, 3])

  def test_applies_data_augmentation_fn_to_tensor_dict(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    def add_one_data_augmentation_fn(tensor_dict):
      return {key: value + 1 for key, value in tensor_dict.items()}

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_one_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        np_image + 1)
    self.assertAllEqual(
        augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 0, 1], [0, 1, 0, 0]])

  def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
767

768
769
    def mul_two_model_preprocessor_fn(image):
      return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    def add_five_to_image_data_augmentation_fn(tensor_dict):
      tensor_dict[fields.InputDataFields.image] += 5
      return tensor_dict

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=mul_two_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_five_to_image_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        (np_image + 5) * 2)

789

pkulzc's avatar
pkulzc committed
790
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
791
792
793
794
795
796
797
798
799

  def test_pad_images_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
pkulzc's avatar
pkulzc committed
800
801
802
803
        fields.InputDataFields.true_image_shape:
            tf.placeholder(tf.int32, [3]),
        fields.InputDataFields.original_image_spatial_shape:
            tf.placeholder(tf.int32, [2])
804
805
806
807
808
809
810
811
812
813
814
815
816
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.true_image_shape]
        .shape.as_list(), [3])
pkulzc's avatar
pkulzc committed
817
818
819
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
        .shape.as_list(), [2])
820
821
822
823
824
825
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])
826
827
828
829
830
831
832

  def test_clip_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
833
834
        fields.InputDataFields.num_groundtruth_boxes:
            tf.placeholder(tf.int32, [])
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])

    with self.test_session() as sess:
      out_tensor_dict = sess.run(
          padded_tensor_dict,
          feed_dict={
              input_tensor_dict[fields.InputDataFields.groundtruth_boxes]:
                  np.random.rand(5, 4),
              input_tensor_dict[fields.InputDataFields.groundtruth_classes]:
                  np.random.rand(2, 3),
857
858
              input_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]:
                  5,
859
860
861
862
863
864
865
          })

    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes].shape, [3, 4])
    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_classes].shape,
        [3, 3])
866
867
868
    self.assertEqual(
        out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
        3)
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

  def test_do_not_pad_dynamic_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[None, None])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [None, None, 3])

  def test_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 5])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
  def test_gray_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 1]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 1])

  def test_gray_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 1]),
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
  def test_keypoints(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_keypoints:
            tf.placeholder(tf.float32, [None, 16, 4]),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.placeholder(tf.bool, [None, 16]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
        .shape.as_list(), [3, 16, 4])
    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.groundtruth_keypoint_visibilities]
        .shape.as_list(), [3, 16])


962
963
if __name__ == '__main__':
  tf.test.main()