inputs_test.py 49.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import os
pkulzc's avatar
pkulzc committed
23
from absl.testing import parameterized
24

25
import numpy as np
26
27
28
import tensorflow as tf

from object_detection import inputs
29
from object_detection.core import preprocessor
30
31
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
pkulzc's avatar
pkulzc committed
32
from object_detection.utils import test_case
33
34
35
36
37
38

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
Zhichao Lu's avatar
Zhichao Lu committed
39
40
41
42
43
44
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'samples/configs/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/pet_label_map.pbtxt')
  data_path = os.path.join(tf.resource_loader.get_data_files_path(),
                           'test_data/pets_examples.record')
45
  configs = config_util.get_configs_from_pipeline_file(fname)
46
47
48
49
50
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
51
  return config_util.merge_external_params_with_configs(
52
      configs, kwargs_dict=override_dict)
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
def _make_initializable_iterator(dataset):
  """Creates an iterator, and initializes tables.

  Args:
    dataset: A `tf.data.Dataset` object.

  Returns:
    A `tf.data.Iterator`.
  """
  iterator = dataset.make_initializable_iterator()
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  return iterator


pkulzc's avatar
pkulzc committed
69
class InputsTest(test_case.TestCase, parameterized.TestCase):
70
71
72
73

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
74
75
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
76
    train_input_fn = inputs.create_train_input_fn(
77
        configs['train_config'], configs['train_input_config'], model_config)
78
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
79

80
    self.assertAllEqual([1, None, None, 3],
81
82
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
83
    self.assertAllEqual([1],
84
85
86
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
87
        [1, 100, 4],
88
89
90
91
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
92
        [1, 100, model_config.faster_rcnn.num_classes],
93
94
95
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
96
97
98
99
100
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
101
102
103
104
105
106
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    model_config = configs['model']
    configs['train_input_config'].num_additional_channels = 2
    configs['train_config'].retain_original_images = True
    model_config.faster_rcnn.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        configs['train_config'], configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([1, None, None, 5],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertAllEqual(
        [1, None, None, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([1],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [1, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

pkulzc's avatar
pkulzc committed
150
151
152
153
154
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
155
156
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
157
158
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
pkulzc's avatar
pkulzc committed
159
160
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
161
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
162
        eval_config, configs['eval_input_configs'][0], model_config)
163
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
164
    self.assertAllEqual([eval_batch_size, None, None, 3],
165
166
167
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
168
        [eval_batch_size, None, None, 3],
169
170
171
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
172
173
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
174
175
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
176
        [eval_batch_size, 100, 4],
177
178
179
180
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
181
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
182
183
184
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
185
    self.assertAllEqual(
186
187
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
188
189
    self.assertEqual(
        tf.float32,
190
        labels[fields.InputDataFields.groundtruth_weights].dtype)
191
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
192
        [eval_batch_size, 100],
193
194
195
196
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
197
        [eval_batch_size, 100],
198
199
200
201
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
202
        [eval_batch_size, 100],
203
204
205
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
206
207
208
209

  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
210
211
    model_config = configs['model']
    model_config.ssd.num_classes = 37
212
213
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
214
        configs['train_config'], configs['train_input_config'], model_config)
215
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
216
217
218
219
220
221
222
223
224
225
226
227
228

    self.assertAllEqual([batch_size, 300, 300, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [batch_size],
        labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
    self.assertAllEqual(
229
        [batch_size, 100, 4],
230
231
232
233
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
234
        [batch_size, 100, model_config.ssd.num_classes],
235
236
237
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
238
    self.assertAllEqual(
239
        [batch_size, 100],
240
        labels[
241
            fields.InputDataFields.groundtruth_weights].shape.as_list())
242
243
    self.assertEqual(
        tf.float32,
244
        labels[fields.InputDataFields.groundtruth_weights].dtype)
245

pkulzc's avatar
pkulzc committed
246
247
248
249
250
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
251
252
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
253
254
    model_config = configs['model']
    model_config.ssd.num_classes = 37
pkulzc's avatar
pkulzc committed
255
256
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
257
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
258
        eval_config, configs['eval_input_configs'][0], model_config)
259
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
260
    self.assertAllEqual([eval_batch_size, 300, 300, 3],
261
262
263
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
264
        [eval_batch_size, 300, 300, 3],
265
266
267
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
268
269
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
270
271
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
272
        [eval_batch_size, 100, 4],
273
274
275
276
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
277
        [eval_batch_size, 100, model_config.ssd.num_classes],
278
279
280
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
281
    self.assertAllEqual(
282
        [eval_batch_size, 100],
283
        labels[
284
            fields.InputDataFields.groundtruth_weights].shape.as_list())
285
286
    self.assertEqual(
        tf.float32,
287
        labels[fields.InputDataFields.groundtruth_weights].dtype)
288
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
289
        [eval_batch_size, 100],
290
291
292
293
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
294
        [eval_batch_size, 100],
295
296
297
298
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
299
        [eval_batch_size, 100],
300
301
302
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
  def test_ssd_inceptionV2_eval_input_with_additional_channels(
      self, eval_batch_size=1):
    """Tests the eval input function for SSDInceptionV2 with additional channels.

    Args:
      eval_batch_size: Batch size for eval set.
    """
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    model_config = configs['model']
    model_config.ssd.num_classes = 37
    configs['eval_input_configs'][0].num_additional_channels = 1
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_config.retain_original_image_additional_channels = True
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 300, 300, 4],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 300, 300, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size, 300, 300, 1], features[
        fields.InputDataFields.image_additional_channels].shape.as_list())
    self.assertEqual(
        tf.uint8,
        features[fields.InputDataFields.image_additional_channels].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.ssd.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(tf.bool,
                     labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.groundtruth_difficult].dtype)

368
369
  def test_predict_input(self):
    """Tests the predict input function."""
370
371
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    predict_input_fn = inputs.create_predict_input_fn(
372
        model_config=configs['model'],
373
        predict_input_config=configs['eval_input_configs'][0])
374
375
    serving_input_receiver = predict_input_fn()

376
    image = serving_input_receiver.features[fields.InputDataFields.image]
377
    receiver_tensors = serving_input_receiver.receiver_tensors[
378
379
        inputs.SERVING_FED_EXAMPLE_KEY]
    self.assertEqual([1, 300, 300, 3], image.shape.as_list())
380
381
382
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

383
384
385
  def test_predict_input_with_additional_channels(self):
    """Tests the predict input function with additional channels."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
386
    configs['eval_input_configs'][0].num_additional_channels = 2
387
388
    predict_input_fn = inputs.create_predict_input_fn(
        model_config=configs['model'],
389
        predict_input_config=configs['eval_input_configs'][0])
390
391
392
393
394
395
396
397
398
399
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features[fields.InputDataFields.image]
    receiver_tensors = serving_input_receiver.receiver_tensors[
        inputs.SERVING_FED_EXAMPLE_KEY]
    # RGB + 2 additional channels = 5 channels.
    self.assertEqual([1, 300, 300, 5], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

400
401
402
  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
403
    configs['model'].ssd.num_classes = 37
404
405
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
406
407
        train_input_config=configs['train_input_config'],
        model_config=configs['model'])
408
409
410
411
412
413
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
414
415
416
417
418
419
420
421
422
423
424
425
    configs['model'].ssd.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_model_config(self):
    """Tests that a TypeError is raised with improper train model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
426
427
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
428
429
        train_input_config=configs['train_input_config'],
        model_config=configs['train_config'])  # Expecting `DetectionModel`.
430
431
432
433
434
435
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
436
    configs['model'].ssd.num_classes = 37
437
438
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
439
        eval_input_config=configs['eval_input_configs'][0],
440
        model_config=configs['model'])
441
442
443
444
445
446
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
447
    configs['model'].ssd.num_classes = 37
448
449
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
450
451
        eval_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
452
453
454
    with self.assertRaises(TypeError):
      eval_input_fn()

455
456
457
458
459
460
  def test_error_with_bad_eval_model_config(self):
    """Tests that a TypeError is raised with improper eval model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
461
        eval_input_config=configs['eval_input_configs'][0],
462
463
464
465
        model_config=configs['eval_config'])  # Expecting `DetectionModel`.
    with self.assertRaises(TypeError):
      eval_input_fn()

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
  def test_output_equal_in_replace_empty_string_with_random_number(self):
    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    test_string = 'hello world'
    feed_dict = {string_placeholder: test_string}

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    self.assertEqual(test_string, out_string)

  def test_output_is_integer_in_replace_empty_string_with_random_number(self):

    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    empty_string = ''
    feed_dict = {string_placeholder: empty_string}

    tf.set_random_seed(0)

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    # Test whether out_string is a string which represents an integer.
    int(out_string)  # throws an error if out_string is not castable to int.

    self.assertEqual(out_string, '2798129067578209328')

498

pkulzc's avatar
pkulzc committed
499
class DataAugmentationFnTest(test_case.TestCase):
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

  def test_apply_image_and_box_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
  def test_apply_image_and_box_augmentation_with_scores(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1.0], np.float32)),
551
        fields.InputDataFields.groundtruth_weights:
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            tf.constant(np.array([0.8], np.float32)),
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_classes],
        [1.0]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[
572
            fields.InputDataFields.groundtruth_weights],
573
574
575
        [0.8]
    )

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
  def test_include_masks_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        })
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.zeros([2, 10, 10], np.uint8))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3])
    self.assertAllEqual(augmented_tensor_dict_out[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20])

  def test_include_keypoints_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints],
        [[[10, 20], [10, 10]]]
    )


def _fake_model_preprocessor_fn(image):
  return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))


def _fake_image_resizer_fn(image, mask):
  return (image, mask, tf.shape(image))


pkulzc's avatar
pkulzc committed
649
class DataTransformationFnTest(test_case.TestCase):
650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
  def test_combine_additional_channels_if_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.image_additional_channels:
            tf.constant(additional_channels),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 1], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=1)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].dtype,
                        tf.float32)
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].shape,
                        [4, 4, 5])
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np.concatenate((image, additional_channels), axis=2))

pkulzc's avatar
pkulzc committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
  def test_use_multiclass_scores_when_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.multiclass_scores:
            tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=3, use_multiclass_scores=True)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_classes])

  def test_use_multiclass_scores_when_not_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.multiclass_scores:
            tf.placeholder(tf.float32),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=3, use_multiclass_scores=True)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict),
          feed_dict={
              tensor_dict[fields.InputDataFields.multiclass_scores]:
                  np.array([], dtype=np.float32)
          })

    self.assertAllClose(
        np.array([[0, 1, 0], [0, 0, 1]], np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_classes])

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
  def test_returns_correct_class_label_encodings(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
756
757
758
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
759

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
  def test_returns_correct_labels_with_unrecognized_class(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(
                np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
                         np.float32)),
        fields.InputDataFields.groundtruth_area:
            tf.constant(np.array([.5, .4, .3])),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, -1, 1], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(
                np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
                         np.float32)),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.constant([True, False, True]),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_is_crowd:
            tf.constant([False, True, False]),
        fields.InputDataFields.groundtruth_difficult:
            tf.constant(np.array([0, 0, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], 2)
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_area], [.5, .3])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[0, 0, 1, 1], [.5, .5, 1, 1]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[.1, .1]], [[.5, .5]]])
    self.assertAllEqual(
        transformed_inputs[
            fields.InputDataFields.groundtruth_keypoint_visibilities],
        [True, True])
    self.assertAllEqual(
        transformed_inputs[
            fields.InputDataFields.groundtruth_instance_masks].shape, [2, 4, 4])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
        [False, False])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_difficult],
        [0, 1])

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
  def test_returns_correct_merged_boxes(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        merge_multiple_boxes=True)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[.5, .5, 1., 1.]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[1, 0, 1]])
853
854
855
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[1, 0, 1]])
856
857
858
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
        1)
859

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
  def test_returns_correct_groundtruth_confidences_when_input_present(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.groundtruth_confidences:
            tf.constant(np.array([1.0, -1.0], np.float32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [-1, 0, 0]])

888
889
890
891
892
893
894
  def test_returns_resized_masks(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_classes:
pkulzc's avatar
pkulzc committed
895
896
897
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.original_image_spatial_shape:
            tf.constant(np.array([4, 4], np.int32))
898
    }
899

900
    def fake_image_resizer_fn(image, masks=None):
901
      resized_image = tf.image.resize_images(image, [8, 8])
902
903
904
905
906
907
908
909
      results = [resized_image]
      if masks is not None:
        resized_masks = tf.transpose(
            tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
            [2, 0, 1])
        results.append(resized_masks)
      results.append(tf.shape(resized_image))
      return results
910
911
912
913
914
915

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=fake_image_resizer_fn,
916
917
        num_classes=num_classes,
        retain_original_image=True)
918
919
920
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
921
922
923
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].dtype, tf.uint8)
    self.assertAllEqual(transformed_inputs[
pkulzc's avatar
pkulzc committed
924
925
926
        fields.InputDataFields.original_image_spatial_shape], [4, 4])
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].shape, [8, 8, 3])
927
928
929
930
931
932
933
934
935
936
937
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8])

  def test_applies_model_preprocess_fn_to_image_tensor(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
938

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
    def fake_model_preprocessor_fn(image):
      return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np_image / 255.)
    self.assertAllClose(transformed_inputs[fields.InputDataFields.
                                           true_image_shape],
                        [4, 4, 3])

  def test_applies_data_augmentation_fn_to_tensor_dict(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
    def add_one_data_augmentation_fn(tensor_dict):
      return {key: value + 1 for key, value in tensor_dict.items()}

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_one_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        np_image + 1)
    self.assertAllEqual(
        augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 0, 1], [0, 1, 0, 0]])

  def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
995

996
997
    def mul_two_model_preprocessor_fn(image):
      return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    def add_five_to_image_data_augmentation_fn(tensor_dict):
      tensor_dict[fields.InputDataFields.image] += 5
      return tensor_dict

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=mul_two_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_five_to_image_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        (np_image + 5) * 2)

1017

pkulzc's avatar
pkulzc committed
1018
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
1019
1020
1021
1022
1023
1024
1025
1026
1027

  def test_pad_images_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
pkulzc's avatar
pkulzc committed
1028
1029
1030
1031
        fields.InputDataFields.true_image_shape:
            tf.placeholder(tf.int32, [3]),
        fields.InputDataFields.original_image_spatial_shape:
            tf.placeholder(tf.int32, [2])
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.true_image_shape]
        .shape.as_list(), [3])
pkulzc's avatar
pkulzc committed
1045
1046
1047
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
        .shape.as_list(), [2])
1048
1049
1050
1051
1052
1053
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])
1054
1055
1056
1057
1058
1059
1060

  def test_clip_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
1061
1062
        fields.InputDataFields.num_groundtruth_boxes:
            tf.placeholder(tf.int32, [])
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])

    with self.test_session() as sess:
      out_tensor_dict = sess.run(
          padded_tensor_dict,
          feed_dict={
              input_tensor_dict[fields.InputDataFields.groundtruth_boxes]:
                  np.random.rand(5, 4),
              input_tensor_dict[fields.InputDataFields.groundtruth_classes]:
                  np.random.rand(2, 3),
1085
1086
              input_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]:
                  5,
1087
1088
1089
1090
1091
1092
1093
          })

    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes].shape, [3, 4])
    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_classes].shape,
        [3, 3])
1094
1095
1096
    self.assertEqual(
        out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
        3)
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

  def test_do_not_pad_dynamic_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[None, None])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [None, None, 3])

  def test_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1116
            tf.placeholder(tf.float32, [None, None, 5]),
1117
1118
1119
1120
1121
1122
1123
1124
1125
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

1126
1127
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1128
1129
1130
1131
1132
1133
1134
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 5])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
  def test_images_and_additional_channels_errors(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
        fields.InputDataFields.original_image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    with self.assertRaises(ValueError):
      _ = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
  def test_gray_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 1]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 1])

  def test_gray_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1169
            tf.placeholder(tf.float32, [None, None, 3]),
1170
1171
1172
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
1173
1174
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
  def test_keypoints(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_keypoints:
            tf.placeholder(tf.float32, [None, 16, 4]),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.placeholder(tf.bool, [None, 16]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
        .shape.as_list(), [3, 16, 4])
    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.groundtruth_keypoint_visibilities]
        .shape.as_list(), [3, 16])


1210
1211
if __name__ == '__main__':
  tf.test.main()