inputs_test.py 71.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import os
23
import unittest
24
from absl import logging
pkulzc's avatar
pkulzc committed
25
from absl.testing import parameterized
26
import numpy as np
27
import six
28
import tensorflow.compat.v1 as tf
29
30

from object_detection import inputs
31
from object_detection.core import preprocessor
32
33
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
pkulzc's avatar
pkulzc committed
34
from object_detection.utils import test_case
35
36
37
38
39
40
41
from object_detection.utils import test_utils
from object_detection.utils import tf_version

if six.PY2:
  import mock  # pylint: disable=g-import-not-at-top
else:
  from unittest import mock  # pylint: disable=g-import-not-at-top, g-importing-member
42
43
44
45
46
47

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
Zhichao Lu's avatar
Zhichao Lu committed
48
49
50
51
52
53
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'samples/configs/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/pet_label_map.pbtxt')
  data_path = os.path.join(tf.resource_loader.get_data_files_path(),
                           'test_data/pets_examples.record')
54
  configs = config_util.get_configs_from_pipeline_file(fname)
55
56
57
58
59
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
60
  return config_util.merge_external_params_with_configs(
61
      configs, kwargs_dict=override_dict)
62
63


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def _get_configs_for_model_sequence_example(model_name):
  """Returns configurations for model."""
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'test_data/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/snapshot_serengeti_label_map.pbtxt')
  data_path = os.path.join(
      tf.resource_loader.get_data_files_path(),
      'test_data/snapshot_serengeti_sequence_examples.record')
  configs = config_util.get_configs_from_pipeline_file(fname)
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
  return config_util.merge_external_params_with_configs(
      configs, kwargs_dict=override_dict)


83
84
85
86
87
88
89
90
91
def _make_initializable_iterator(dataset):
  """Creates an iterator, and initializes tables.

  Args:
    dataset: A `tf.data.Dataset` object.

  Returns:
    A `tf.data.Iterator`.
  """
92
  iterator = tf.data.make_initializable_iterator(dataset)
93
94
95
96
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  return iterator


97
98
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only tests under TF2.X.')
class InputFnTest(test_case.TestCase, parameterized.TestCase):
99
100
101
102

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
103
104
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
105
    train_input_fn = inputs.create_train_input_fn(
106
        configs['train_config'], configs['train_input_config'], model_config)
107
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
108

109
    self.assertAllEqual([1, None, None, 3],
110
111
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
112
    self.assertAllEqual([1],
113
114
115
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
116
        [1, 100, 4],
117
118
119
120
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
121
        [1, 100, model_config.faster_rcnn.num_classes],
122
123
124
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
125
126
127
128
129
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
130
131
132
133
134
135
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    model_config = configs['model']
    configs['train_input_config'].num_additional_channels = 2
    configs['train_config'].retain_original_images = True
    model_config.faster_rcnn.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        configs['train_config'], configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([1, None, None, 5],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertAllEqual(
        [1, None, None, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([1],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [1, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

pkulzc's avatar
pkulzc committed
179
180
181
182
183
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
184
185
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
186
187
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
pkulzc's avatar
pkulzc committed
188
189
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
190
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
191
        eval_config, configs['eval_input_configs'][0], model_config)
192
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
193
    self.assertAllEqual([eval_batch_size, None, None, 3],
194
195
196
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
197
        [eval_batch_size, None, None, 3],
198
199
200
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
201
202
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
203
204
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
205
        [eval_batch_size, 100, 4],
206
207
208
209
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
210
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
211
212
213
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
214
    self.assertAllEqual(
215
216
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
217
218
    self.assertEqual(
        tf.float32,
219
        labels[fields.InputDataFields.groundtruth_weights].dtype)
220
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
221
        [eval_batch_size, 100],
222
223
224
225
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
226
        [eval_batch_size, 100],
227
228
229
230
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
231
        [eval_batch_size, 100],
232
233
234
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  def test_context_rcnn_resnet50_train_input_with_sequence_example(
      self, train_batch_size=8):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap')
    model_config = configs['model']
    train_config = configs['train_config']
    train_config.batch_size = train_batch_size
    train_input_fn = inputs.create_train_input_fn(
        train_config, configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([train_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([train_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

  def test_context_rcnn_resnet50_eval_input_with_sequence_example(
      self, eval_batch_size=8):
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap')
    model_config = configs['model']
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 640, 640, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_weights].dtype)

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
  def test_context_rcnn_resnet50_train_input_with_sequence_example_frame_index(
    self, train_batch_size=8):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model_sequence_example(
        'context_rcnn_camera_trap', frame_index=2)
    model_config = configs['model']
    train_config = configs['train_config']
    train_config.batch_size = train_batch_size
    train_input_fn = inputs.create_train_input_fn(
        train_config, configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([train_batch_size, 640, 640, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([train_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                    labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                    labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [train_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                    labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [train_batch_size, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

355
356
357
  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
358
359
    model_config = configs['model']
    model_config.ssd.num_classes = 37
360
361
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
362
        configs['train_config'], configs['train_input_config'], model_config)
363
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
364
365
366
367
368
369
370
371
372
373
374
375
376

    self.assertAllEqual([batch_size, 300, 300, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [batch_size],
        labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
    self.assertAllEqual(
377
        [batch_size, 100, 4],
378
379
380
381
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
382
        [batch_size, 100, model_config.ssd.num_classes],
383
384
385
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
386
    self.assertAllEqual(
387
        [batch_size, 100],
388
        labels[
389
            fields.InputDataFields.groundtruth_weights].shape.as_list())
390
391
    self.assertEqual(
        tf.float32,
392
        labels[fields.InputDataFields.groundtruth_weights].dtype)
393

pkulzc's avatar
pkulzc committed
394
395
396
397
398
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
399
400
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
401
402
    model_config = configs['model']
    model_config.ssd.num_classes = 37
pkulzc's avatar
pkulzc committed
403
404
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
405
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
406
        eval_config, configs['eval_input_configs'][0], model_config)
407
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
408
    self.assertAllEqual([eval_batch_size, 300, 300, 3],
409
410
411
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
412
        [eval_batch_size, 300, 300, 3],
413
414
415
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
416
417
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
418
419
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
420
        [eval_batch_size, 100, 4],
421
422
423
424
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
425
        [eval_batch_size, 100, model_config.ssd.num_classes],
426
427
428
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
429
    self.assertAllEqual(
430
        [eval_batch_size, 100],
431
        labels[
432
            fields.InputDataFields.groundtruth_weights].shape.as_list())
433
434
    self.assertEqual(
        tf.float32,
435
        labels[fields.InputDataFields.groundtruth_weights].dtype)
436
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
437
        [eval_batch_size, 100],
438
439
440
441
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
442
        [eval_batch_size, 100],
443
444
445
446
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
447
        [eval_batch_size, 100],
448
449
450
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
451

452
453
  def test_ssd_inceptionV2_eval_input_with_additional_channels(
      self, eval_batch_size=1):
454
    """Tests the eval input function for SSDInceptionV2 with additional channel.
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

    Args:
      eval_batch_size: Batch size for eval set.
    """
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    model_config = configs['model']
    model_config.ssd.num_classes = 37
    configs['eval_input_configs'][0].num_additional_channels = 1
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_config.retain_original_image_additional_channels = True
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 300, 300, 4],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 300, 300, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size, 300, 300, 1], features[
        fields.InputDataFields.image_additional_channels].shape.as_list())
    self.assertEqual(
        tf.uint8,
        features[fields.InputDataFields.image_additional_channels].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.ssd.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(tf.bool,
                     labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.groundtruth_difficult].dtype)

516
517
  def test_predict_input(self):
    """Tests the predict input function."""
518
519
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    predict_input_fn = inputs.create_predict_input_fn(
520
        model_config=configs['model'],
521
        predict_input_config=configs['eval_input_configs'][0])
522
523
    serving_input_receiver = predict_input_fn()

524
    image = serving_input_receiver.features[fields.InputDataFields.image]
525
    receiver_tensors = serving_input_receiver.receiver_tensors[
526
527
        inputs.SERVING_FED_EXAMPLE_KEY]
    self.assertEqual([1, 300, 300, 3], image.shape.as_list())
528
529
530
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

531
532
533
  def test_predict_input_with_additional_channels(self):
    """Tests the predict input function with additional channels."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
534
    configs['eval_input_configs'][0].num_additional_channels = 2
535
536
    predict_input_fn = inputs.create_predict_input_fn(
        model_config=configs['model'],
537
        predict_input_config=configs['eval_input_configs'][0])
538
539
540
541
542
543
544
545
546
547
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features[fields.InputDataFields.image]
    receiver_tensors = serving_input_receiver.receiver_tensors[
        inputs.SERVING_FED_EXAMPLE_KEY]
    # RGB + 2 additional channels = 5 channels.
    self.assertEqual([1, 300, 300, 5], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

548
549
550
  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
551
    configs['model'].ssd.num_classes = 37
552
553
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
554
555
        train_input_config=configs['train_input_config'],
        model_config=configs['model'])
556
557
558
559
560
561
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
562
563
564
565
566
567
568
569
570
571
572
573
    configs['model'].ssd.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_model_config(self):
    """Tests that a TypeError is raised with improper train model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
574
575
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
576
577
        train_input_config=configs['train_input_config'],
        model_config=configs['train_config'])  # Expecting `DetectionModel`.
578
579
580
581
582
583
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
584
    configs['model'].ssd.num_classes = 37
585
586
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
587
        eval_input_config=configs['eval_input_configs'][0],
588
        model_config=configs['model'])
589
590
591
592
593
594
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
595
    configs['model'].ssd.num_classes = 37
596
597
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
598
599
        eval_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
600
601
602
    with self.assertRaises(TypeError):
      eval_input_fn()

603
604
605
606
607
608
  def test_error_with_bad_eval_model_config(self):
    """Tests that a TypeError is raised with improper eval model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
609
        eval_input_config=configs['eval_input_configs'][0],
610
611
612
613
        model_config=configs['eval_config'])  # Expecting `DetectionModel`.
    with self.assertRaises(TypeError):
      eval_input_fn()

614
615
616
617
618
  def test_output_equal_in_replace_empty_string_with_random_number(self):
    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

619
    test_string = b'hello world'
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    feed_dict = {string_placeholder: test_string}

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    self.assertEqual(test_string, out_string)

  def test_output_is_integer_in_replace_empty_string_with_random_number(self):

    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    empty_string = ''
    feed_dict = {string_placeholder: empty_string}
    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

638
639
640
641
642
643
644
    is_integer = True
    try:
      # Test whether out_string is a string which represents an integer, the
      # casting below will throw an error if out_string is not castable to int.
      int(out_string)
    except ValueError:
      is_integer = False
645

646
    self.assertTrue(is_integer)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

  def test_force_no_resize(self):
    """Tests the functionality of force_no_reisze option."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['eval_config'].force_no_resize = True

    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
        eval_input_config=configs['eval_input_configs'][0],
        model_config=configs['model']
    )
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['train_input_config'],
        model_config=configs['model']
    )

    features_train, _ = _make_initializable_iterator(
        train_input_fn()).get_next()

    features_eval, _ = _make_initializable_iterator(
        eval_input_fn()).get_next()

    images_train, images_eval = features_train['image'], features_eval['image']

    self.assertEqual([1, None, None, 3], images_eval.shape.as_list())
    self.assertEqual([24, 300, 300, 3], images_train.shape.as_list())
674

675

pkulzc's avatar
pkulzc committed
676
class DataAugmentationFnTest(test_case.TestCase):
677
678
679
680
681
682
683
684
685
686
687
688
689

  def test_apply_image_and_box_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.
                                    groundtruth_boxes])
    image, groundtruth_boxes = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]])
704

705
706
707
708
709
710
711
712
713
714
715
716
  def test_apply_image_and_box_augmentation_with_scores(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1.0], np.float32)),
          fields.InputDataFields.groundtruth_weights:
              tf.constant(np.array([0.8], np.float32)),
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_weights])
    (image, groundtruth_boxes,
     groundtruth_classes, groundtruth_weights) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]])
    self.assertAllClose(groundtruth_classes.shape, [1.0])
    self.assertAllClose(groundtruth_weights, [0.8])
739

740
741
742
743
744
745
746
747
748
749
750
  def test_include_masks_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        })
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
751
752
753
754
755
756
757
758
759
760
761
762
763
764
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_instance_masks:
              tf.constant(np.zeros([2, 10, 10], np.uint8))
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.
                                    groundtruth_instance_masks])
    image, masks = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllEqual(masks.shape, [2, 20, 20])
765
766
767
768
769
770
771
772
773
774
775
776
777

  def test_include_keypoints_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
      }
      augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
      return (augmented_tensor_dict[fields.InputDataFields.image],
              augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes],
              augmented_tensor_dict[fields.InputDataFields.
                                    groundtruth_keypoints])
    image, boxes, keypoints = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(image.shape, [20, 20, 3])
    self.assertAllClose(boxes, [[10, 10, 20, 20]])
    self.assertAllClose(keypoints, [[[10, 20], [10, 10]]])
796
797
798
799
800
801
802
803
804
805


def _fake_model_preprocessor_fn(image):
  return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))


def _fake_image_resizer_fn(image, mask):
  return (image, mask, tf.shape(image))


806
807
808
809
810
811
812
813
def _fake_resize50_preprocess_fn(image):
  image = image[0]
  image, shape = preprocessor.resize_to_range(
      image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True)

  return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0)


814
class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase):
815

816
817
818
  def test_combine_additional_channels_if_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
819
820
821
822
823
824
825
    def graph_fn(image, additional_channels):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.image_additional_channels: additional_channels,
          fields.InputDataFields.groundtruth_classes:
              tf.constant([1, 1], tf.int32)
      }
826

827
828
829
830
831
832
833
834
835
836
837
838
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=1)
      out_tensors = input_transformation_fn(tensor_dict=tensor_dict)
      return out_tensors[fields.InputDataFields.image]
    out_image = self.execute_cpu(graph_fn, [image, additional_channels])
    self.assertAllEqual(out_image.dtype, tf.float32)
    self.assertAllEqual(out_image.shape, [4, 4, 5])
    self.assertAllClose(out_image, np.concatenate((image, additional_channels),
                                                  axis=2))
839

pkulzc's avatar
pkulzc committed
840
  def test_use_multiclass_scores_when_present(self):
841
842
843
844
845
846
847
848
849
850
851
852
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).
                                                    astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
                                   np.float32)),
          fields.InputDataFields.multiclass_scores:
              tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32))
      }
pkulzc's avatar
pkulzc committed
853

854
855
856
857
858
859
860
861
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3, use_multiclass_scores=True)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return transformed_inputs[fields.InputDataFields.groundtruth_classes]
    groundtruth_classes = self.execute_cpu(graph_fn, [])
pkulzc's avatar
pkulzc committed
862
863
    self.assertAllClose(
        np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
864
        groundtruth_classes)
pkulzc's avatar
pkulzc committed
865

866
867
  @unittest.skipIf(tf_version.is_tf2(), ('Skipping due to different behaviour '
                                         'in TF 2.X'))
pkulzc's avatar
pkulzc committed
868
  def test_use_multiclass_scores_when_not_present(self):
869
870
871
872
873
874
875
876
877
878
879
880
881
    def graph_fn():
      zero_num_elements = tf.random.uniform([], minval=0, maxval=1,
                                            dtype=tf.int32)
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
                                   np.float32)),
          fields.InputDataFields.multiclass_scores: tf.zeros(zero_num_elements),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32))
      }
pkulzc's avatar
pkulzc committed
882

883
884
885
886
887
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3, use_multiclass_scores=True)
pkulzc's avatar
pkulzc committed
888

889
890
891
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return transformed_inputs[fields.InputDataFields.groundtruth_classes]
    groundtruth_classes = self.execute_cpu(graph_fn, [])
pkulzc's avatar
pkulzc committed
892
893
    self.assertAllClose(
        np.array([[0, 1, 0], [0, 0, 1]], np.float32),
894
        groundtruth_classes)
pkulzc's avatar
pkulzc committed
895

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
  @parameterized.parameters(
      {'labeled_classes': [1, 2]},
      {'labeled_classes': []},
      {'labeled_classes': [1, -1, 2]}  # -1 denotes an unrecognized class
  )
  def test_use_labeled_classes(self, labeled_classes):

    def compute_fn(image, groundtruth_boxes, groundtruth_classes,
                   groundtruth_labeled_classes):
      tensor_dict = {
          fields.InputDataFields.image:
              image,
          fields.InputDataFields.groundtruth_boxes:
              groundtruth_boxes,
          fields.InputDataFields.groundtruth_classes:
              groundtruth_classes,
          fields.InputDataFields.groundtruth_labeled_classes:
              groundtruth_labeled_classes
      }

      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3)
      return input_transformation_fn(tensor_dict=tensor_dict)

    image = np.random.rand(4, 4, 3).astype(np.float32)
    groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)
    groundtruth_classes = np.array([1, 2], np.int32)
    groundtruth_labeled_classes = np.array(labeled_classes, np.int32)

    transformed_inputs = self.execute_cpu(compute_fn, [
        image, groundtruth_boxes, groundtruth_classes,
        groundtruth_labeled_classes
    ])

    if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]:
      transformed_labeled_classes = [1, 1, 0]
    elif not labeled_classes:
      transformed_labeled_classes = [1, 1, 1]
    else:
      logging.exception('Unexpected labeled_classes %r', labeled_classes)

    self.assertAllEqual(
        np.array(transformed_labeled_classes, np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes])

944
  def test_returns_correct_class_label_encodings(self):
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences])
    (groundtruth_classes, groundtruth_confidences) = self.execute_cpu(graph_fn,
                                                                      [])
    self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]])
968

969
  def test_returns_correct_labels_with_unrecognized_class(self):
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(
                  np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
                           np.float32)),
          fields.InputDataFields.groundtruth_area:
              tf.constant(np.array([.5, .4, .3])),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, -1, 1], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant(
                  np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
                           np.float32)),
          fields.InputDataFields.groundtruth_keypoint_visibilities:
              tf.constant([[True, True], [False, False], [True, True]]),
          fields.InputDataFields.groundtruth_instance_masks:
              tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
          fields.InputDataFields.groundtruth_is_crowd:
              tf.constant([False, True, False]),
          fields.InputDataFields.groundtruth_difficult:
              tf.constant(np.array([0, 0, 1], np.int32))
      }
995

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_area],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences],
              transformed_inputs[fields.InputDataFields.groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_keypoint_visibilities],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_instance_masks],
              transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
              transformed_inputs[fields.InputDataFields.groundtruth_difficult])
    (groundtruth_classes, num_groundtruth_boxes, groundtruth_area,
     groundtruth_confidences, groundtruth_boxes, groundtruth_keypoints,
     groundtruth_keypoint_visibilities, groundtruth_instance_masks,
     groundtruth_is_crowd, groundtruth_difficult) = self.execute_cpu(graph_fn,
                                                                     [])

    self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]])
    self.assertAllEqual(num_groundtruth_boxes, 2)
    self.assertAllClose(groundtruth_area, [.5, .3])
    self.assertAllEqual(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(groundtruth_boxes, [[0, 0, 1, 1], [.5, .5, 1, 1]])
    self.assertAllClose(groundtruth_keypoints, [[[.1, .1]], [[.5, .5]]])
    self.assertAllEqual(groundtruth_keypoint_visibilities,
                        [[True, True], [True, True]])
    self.assertAllEqual(groundtruth_instance_masks.shape, [2, 4, 4])
    self.assertAllEqual(groundtruth_is_crowd, [False, False])
    self.assertAllEqual(groundtruth_difficult, [0, 1])
1033

1034
  def test_returns_correct_merged_boxes(self):
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          merge_multiple_boxes=True)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences],
              transformed_inputs[fields.InputDataFields.num_groundtruth_boxes])
    (groundtruth_boxes, groundtruth_classes, groundtruth_confidences,
     num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
1061
    self.assertAllClose(
1062
        groundtruth_boxes,
1063
1064
        [[.5, .5, 1., 1.]])
    self.assertAllClose(
1065
        groundtruth_classes,
1066
        [[1, 0, 1]])
1067
    self.assertAllClose(
1068
        groundtruth_confidences,
1069
        [[1, 0, 1]])
1070
    self.assertAllClose(
1071
        num_groundtruth_boxes,
1072
        1)
1073

1074
  def test_returns_correct_groundtruth_confidences_when_input_present(self):
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32)),
          fields.InputDataFields.groundtruth_confidences:
              tf.constant(np.array([1.0, -1.0], np.float32))
      }
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_confidences])
    groundtruth_classes, groundtruth_confidences = self.execute_cpu(graph_fn,
                                                                    [])
1098
    self.assertAllClose(
1099
        groundtruth_classes,
1100
1101
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
1102
        groundtruth_confidences,
1103
1104
        [[0, 0, 1], [-1, 0, 0]])

1105
  def test_returns_resized_masks(self):
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_instance_masks:
              tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32)),
          fields.InputDataFields.original_image_spatial_shape:
              tf.constant(np.array([4, 4], np.int32))
      }
1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
      def fake_image_resizer_fn(image, masks=None):
        resized_image = tf.image.resize_images(image, [8, 8])
        results = [resized_image]
        if masks is not None:
          resized_masks = tf.transpose(
              tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
              [2, 0, 1])
          results.append(resized_masks)
        results.append(tf.shape(resized_image))
        return results

      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=fake_image_resizer_fn,
          num_classes=num_classes,
          retain_original_image=True)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.original_image],
              transformed_inputs[fields.InputDataFields.
                                 original_image_spatial_shape],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_instance_masks])
    (original_image, original_image_shape,
     groundtruth_instance_masks) = self.execute_cpu(graph_fn, [])
    self.assertEqual(original_image.dtype, np.uint8)
    self.assertAllEqual(original_image_shape, [4, 4])
    self.assertAllEqual(original_image.shape, [8, 8, 3])
    self.assertAllEqual(groundtruth_instance_masks.shape, [2, 8, 8])
1148
1149
1150

  def test_applies_model_preprocess_fn_to_image_tensor(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
1151
1152
1153
1154
1155
1156
    def graph_fn(image):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1157

1158
1159
      def fake_model_preprocessor_fn(image):
        return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))
1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.image],
              transformed_inputs[fields.InputDataFields.true_image_shape])
    image, true_image_shape = self.execute_cpu(graph_fn, [np_image])
    self.assertAllClose(image, np_image / 255.)
    self.assertAllClose(true_image_shape, [4, 4, 3])
1173
1174
1175

  def test_applies_data_augmentation_fn_to_tensor_dict(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
1176
1177
1178
1179
1180
1181
    def graph_fn(image):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1182

1183
1184
      def add_one_data_augmentation_fn(tensor_dict):
        return {key: value + 1 for key, value in tensor_dict.items()}
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
      num_classes = 4
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          data_augmentation_fn=add_one_data_augmentation_fn)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.image],
              transformed_inputs[fields.InputDataFields.groundtruth_classes])
    image, groundtruth_classes = self.execute_cpu(graph_fn, [np_image])
    self.assertAllEqual(image, np_image + 1)
    self.assertAllEqual(
        groundtruth_classes,
1200
1201
1202
1203
        [[0, 0, 0, 1], [0, 1, 0, 0]])

  def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
1204
1205
1206
1207
1208
1209
    def graph_fn(image):
      tensor_dict = {
          fields.InputDataFields.image: image,
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([3, 1], np.int32))
      }
1210

1211
1212
      def mul_two_model_preprocessor_fn(image):
        return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
1213

1214
1215
1216
      def add_five_to_image_data_augmentation_fn(tensor_dict):
        tensor_dict[fields.InputDataFields.image] += 5
        return tensor_dict
1217

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
      num_classes = 4
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=mul_two_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          data_augmentation_fn=add_five_to_image_data_augmentation_fn)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return transformed_inputs[fields.InputDataFields.image]
    image = self.execute_cpu(graph_fn, [np_image])
    self.assertAllEqual(image, (np_image + 5) * 2)
1229

1230
  def test_resize_with_padding(self):
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]),
      }
1243

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,)
      transformed_inputs = input_transformation_fn(tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_boxes],
              transformed_inputs[fields.InputDataFields.groundtruth_keypoints])
    groundtruth_boxes, groundtruth_keypoints = self.execute_cpu(graph_fn, [])
1254
    self.assertAllClose(
1255
        groundtruth_boxes,
1256
1257
        [[.5, .25, 1., .5], [.0, .0, .5, .25]])
    self.assertAllClose(
1258
        groundtruth_keypoints,
1259
1260
1261
        [[[.1, .1]], [[.3, .2]]])

  def test_groundtruth_keypoint_weights(self):
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                           [[0.5, 0.6], [0.7, 0.8]]]),
          fields.InputDataFields.groundtruth_keypoint_visibilities:
              tf.constant([[True, False], [True, True]]),
      }
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
      num_classes = 3
      keypoint_type_weight = [1.0, 2.0]
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes,
          keypoint_type_weight=keypoint_type_weight)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_keypoint_weights])

    groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu(
        graph_fn, [])
1293
    self.assertAllClose(
1294
        groundtruth_keypoints,
1295
1296
1297
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
1298
        groundtruth_keypoint_weights,
1299
1300
1301
        [[1.0, 0.0], [1.0, 2.0]])

  def test_groundtruth_keypoint_weights_default(self):
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_keypoints:
              tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                           [[0.5, 0.6], [0.7, 0.8]]]),
      }
1315

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
      num_classes = 3
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
              transformed_inputs[fields.InputDataFields.
                                 groundtruth_keypoint_weights])
    groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu(
        graph_fn, [])
1328
    self.assertAllClose(
1329
        groundtruth_keypoints,
1330
1331
1332
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
1333
        groundtruth_keypoint_weights,
1334
        [[1.0, 1.0], [1.0, 1.0]])
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
  def test_groundtruth_dense_pose(self):
    def graph_fn():
      tensor_dict = {
          fields.InputDataFields.image:
              tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                   np.float32)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant(np.array([1, 2], np.int32)),
          fields.InputDataFields.groundtruth_dp_num_points:
              tf.constant([0, 2], dtype=tf.int32),
          fields.InputDataFields.groundtruth_dp_part_ids:
              tf.constant([[0, 0], [4, 23]], dtype=tf.int32),
          fields.InputDataFields.groundtruth_dp_surface_coords:
              tf.constant([[[0., 0., 0., 0.,], [0., 0., 0., 0.,]],
                           [[0.1, 0.2, 0.3, 0.4,], [0.6, 0.8, 0.6, 0.7,]]],
                          dtype=tf.float32),
      }

      num_classes = 1
      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_resize50_preprocess_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=num_classes)
      transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
      transformed_dp_num_points = transformed_inputs[
          fields.InputDataFields.groundtruth_dp_num_points]
      transformed_dp_part_ids = transformed_inputs[
          fields.InputDataFields.groundtruth_dp_part_ids]
      transformed_dp_surface_coords = transformed_inputs[
          fields.InputDataFields.groundtruth_dp_surface_coords]
      return (transformed_dp_num_points, transformed_dp_part_ids,
              transformed_dp_surface_coords)

    dp_num_points, dp_part_ids, dp_surface_coords = self.execute_cpu(
        graph_fn, [])
    self.assertAllEqual(dp_num_points, [0, 2])
    self.assertAllEqual(dp_part_ids, [[0, 0], [4, 23]])
    self.assertAllClose(
        dp_surface_coords,
        [[[0., 0., 0., 0.,], [0., 0., 0., 0.,]],
         [[0.1, 0.1, 0.3, 0.4,], [0.6, 0.4, 0.6, 0.7,]]])

1381

pkulzc's avatar
pkulzc committed
1382
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
1383
1384
1385
1386

  def test_pad_images_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1387
            tf.random.uniform([3, 3, 3]),
1388
        fields.InputDataFields.groundtruth_boxes:
1389
            tf.random.uniform([2, 4]),
1390
        fields.InputDataFields.groundtruth_classes:
1391
            tf.random.uniform([2, 3], minval=0, maxval=2, dtype=tf.int32),
pkulzc's avatar
pkulzc committed
1392
        fields.InputDataFields.true_image_shape:
1393
            tf.constant([3, 3, 3]),
pkulzc's avatar
pkulzc committed
1394
        fields.InputDataFields.original_image_spatial_shape:
1395
            tf.constant([3, 3])
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.true_image_shape]
        .shape.as_list(), [3])
pkulzc's avatar
pkulzc committed
1409
1410
1411
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
        .shape.as_list(), [2])
1412
1413
1414
1415
1416
1417
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])
1418
1419

  def test_clip_boxes_and_classes(self):
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    def graph_fn():
      input_tensor_dict = {
          fields.InputDataFields.groundtruth_boxes:
              tf.random.uniform([5, 4]),
          fields.InputDataFields.groundtruth_classes:
              tf.random.uniform([2, 3], maxval=10, dtype=tf.int32),
          fields.InputDataFields.num_groundtruth_boxes:
              tf.constant(5)
      }
      padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])
      return (padded_tensor_dict[fields.InputDataFields.groundtruth_boxes],
              padded_tensor_dict[fields.InputDataFields.groundtruth_classes],
              padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes])
    (groundtruth_boxes, groundtruth_classes,
     num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(groundtruth_boxes.shape, [3, 4])
    self.assertAllEqual(groundtruth_classes.shape, [3, 3])
    self.assertEqual(num_groundtruth_boxes, 3)
1442
1443
1444
1445

  def test_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1446
            test_utils.image_with_dynamic_shape(4, 3, 5),
1447
        fields.InputDataFields.image_additional_channels:
1448
            test_utils.image_with_dynamic_shape(4, 3, 2),
1449
1450
1451
1452
1453
1454
1455
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

1456
1457
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1458
1459
1460
1461
1462
1463
1464
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 5])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1465
1466
1467
  def test_images_and_additional_channels_errors(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1468
            test_utils.image_with_dynamic_shape(10, 10, 3),
1469
        fields.InputDataFields.image_additional_channels:
1470
            test_utils.image_with_dynamic_shape(10, 10, 2),
1471
        fields.InputDataFields.original_image:
1472
            test_utils.image_with_dynamic_shape(10, 10, 3),
1473
1474
1475
1476
1477
1478
1479
1480
    }
    with self.assertRaises(ValueError):
      _ = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])

1481
1482
1483
  def test_gray_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1484
            test_utils.image_with_dynamic_shape(4, 4, 1),
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 1])

  def test_gray_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1499
            test_utils.image_with_dynamic_shape(4, 4, 3),
1500
        fields.InputDataFields.image_additional_channels:
1501
            test_utils.image_with_dynamic_shape(4, 4, 2),
1502
    }
1503
1504
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1518
  def test_keypoints(self):
1519
1520
1521
    keypoints = test_utils.keypoints_with_dynamic_shape(10, 16, 4)
    visibilities = tf.cast(tf.random.uniform(tf.shape(keypoints)[:-1], minval=0,
                                             maxval=2, dtype=tf.int32), tf.bool)
1522
1523
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_keypoints:
1524
            test_utils.keypoints_with_dynamic_shape(10, 16, 4),
1525
        fields.InputDataFields.groundtruth_keypoint_visibilities:
1526
            visibilities
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
        .shape.as_list(), [3, 16, 4])
    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.groundtruth_keypoint_visibilities]
        .shape.as_list(), [3, 16])

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
  def test_dense_pose(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_dp_num_points:
            tf.constant([0, 2], dtype=tf.int32),
        fields.InputDataFields.groundtruth_dp_part_ids:
            tf.constant([[0, 0], [4, 23]], dtype=tf.int32),
        fields.InputDataFields.groundtruth_dp_surface_coords:
            tf.constant([[[0., 0., 0., 0.,], [0., 0., 0., 0.,]],
                         [[0.1, 0.2, 0.3, 0.4,], [0.6, 0.8, 0.6, 0.7,]]],
                        dtype=tf.float32),
    }

    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=1,
        spatial_image_shape=[128, 128],
        max_dp_points=200)

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_dp_num_points]
        .shape.as_list(), [3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids]
        .shape.as_list(), [3, 200])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_dp_surface_coords]
        .shape.as_list(), [3, 200, 4])

1571
1572
1573
1574
  def test_context_features(self):
    context_memory_size = 8
    context_feature_length = 10
    max_num_context_features = 20
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    def graph_fn():
      input_tensor_dict = {
          fields.InputDataFields.context_features:
              tf.ones([context_memory_size, context_feature_length]),
          fields.InputDataFields.context_feature_length:
              tf.constant(context_feature_length)
      }
      padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6],
          max_num_context_features=max_num_context_features,
          context_feature_length=context_feature_length)
1589

1590
1591
1592
1593
1594
      self.assertAllEqual(
          padded_tensor_dict[
              fields.InputDataFields.context_features].shape.as_list(),
          [max_num_context_features, context_feature_length])
      return padded_tensor_dict[fields.InputDataFields.valid_context_size]
1595

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    valid_context_size = self.execute_cpu(graph_fn, [])
    self.assertEqual(valid_context_size, context_memory_size)


class NegativeSizeTest(test_case.TestCase):
  """Test for inputs and related funcitons."""

  def test_negative_size_error(self):
    """Test that error is raised for negative size boxes."""

    def graph_fn():
      tensors = {
          fields.InputDataFields.image: tf.zeros((128, 128, 3)),
          fields.InputDataFields.groundtruth_classes:
              tf.constant([1, 1], tf.int32),
          fields.InputDataFields.groundtruth_boxes:
              tf.constant([[0.5, 0.5, 0.4, 0.5]], tf.float32)
1613
      }
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
      tensors = inputs.transform_input_data(
          tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn,
          num_classes=10)
      return tensors[fields.InputDataFields.groundtruth_boxes]
    with self.assertRaises(tf.errors.InvalidArgumentError):
      self.execute_cpu(graph_fn, [])

  def test_negative_size_no_assert(self):
    """Test that negative size boxes are filtered out without assert.

    This test simulates the behaviour when we run on TPU and Assert ops are
    not supported.
    """
1627

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
    tensors = {
        fields.InputDataFields.image: tf.zeros((128, 128, 3)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant([1, 1], tf.int32),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant([[0.5, 0.5, 0.4, 0.5], [0.5, 0.5, 0.6, 0.6]],
                        tf.float32)
    }

    with mock.patch.object(tf, 'Assert') as tf_assert:
      tf_assert.return_value = tf.no_op()
      tensors = inputs.transform_input_data(
          tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn,
          num_classes=10)

      self.assertAllClose(tensors[fields.InputDataFields.groundtruth_boxes],
                          [[0.5, 0.5, 0.6, 0.6]])
1645

1646

1647
1648
if __name__ == '__main__':
  tf.test.main()