keras_cifar_main.py 7.07 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
31
32
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils


33
34
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
35
36
]

37

38
39
40
41
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
42
  """Handles linear scaling rule and LR decay.
43

44
45
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
46
47
48
49

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
50
51
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
52
53
54
55

  Returns:
    Adjusted learning rate.
  """
56
  del current_batch, batches_per_epoch  # not used
Shining Sun's avatar
Shining Sun committed
57
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
58
  learning_rate = initial_learning_rate
59
  for mult, start_epoch in LR_SCHEDULE:
60
61
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
62
63
64
65
66
67
68
69
70
71
72
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

Shining Sun's avatar
Shining Sun committed
73
  This method converts the label to one hot to fit the loss function.
74

75
76
77
78
79
80
81
82
83
84
  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
85
  label = tf.compat.v1.sparse_to_dense(label, (cifar_main.NUM_CLASSES,), 1)
86
87
88
  return image, label


Shining Sun's avatar
Shining Sun committed
89
90
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
91
92
93
94
95
96

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
97
98
99

  Returns:
    Dictionary of training and eval stats.
100
  """
101
102
  # TODO(tobyboyd): Remove eager flag when tf 1.0 testing ends.
  # Eager is default in tf 2.0 and should not be toggled
103
104
105
106
  if keras_common.is_v2_0():
    keras_common.set_config_v2()
  else:
    config = keras_common.get_config_proto_v1()
107
108
109
110
111
    if flags_obj.enable_eager:
      tf.compat.v1.enable_eager_execution(config=config)
    else:
      sess = tf.Session(config=config)
      tf.keras.backend.set_session(sess)
112

113
114
115
116
117
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

118
119
120
121
122
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
123

124
125
126
127
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus)

128
  strategy_scope = distribution_utils.get_strategy_scope(strategy)
129

130
  if flags_obj.use_synthetic_data:
131
    distribution_utils.set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
132
    input_fn = keras_common.get_synth_input_fn(
133
134
135
136
        height=cifar_main.HEIGHT,
        width=cifar_main.WIDTH,
        num_channels=cifar_main.NUM_CHANNELS,
        num_classes=cifar_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
137
        dtype=flags_core.get_tf_dtype(flags_obj))
138
  else:
139
    distribution_utils.undo_set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
140
141
142
143
144
    input_fn = cifar_main.input_fn

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
145
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
146
147
148
149
150
151
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)

  eval_input_dataset = input_fn(
      is_training=False,
      data_dir=flags_obj.data_dir,
152
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
153
154
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)
155

Shining Sun's avatar
Shining Sun committed
156
  with strategy_scope:
Shining Sun's avatar
Shining Sun committed
157
158
    optimizer = keras_common.get_optimizer()
    model = resnet_cifar_model.resnet56(classes=cifar_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
159

Shining Sun's avatar
Shining Sun committed
160
161
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
162
                  run_eagerly=flags_obj.run_eagerly,
Shining Sun's avatar
Shining Sun committed
163
                  metrics=['categorical_accuracy'])
Shining Sun's avatar
Shining Sun committed
164

165
  callbacks = keras_common.get_callbacks(
166
      learning_rate_schedule, cifar_main.NUM_IMAGES['train'])
167

Shining Sun's avatar
Shining Sun committed
168
169
170
171
172
173
174
  train_steps = cifar_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

175
  num_eval_steps = (cifar_main.NUM_IMAGES['validation'] //
176
177
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
178
179
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
180
    tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
181
182
183
    num_eval_steps = None
    validation_data = None

184
  history = model.fit(train_input_dataset,
185
186
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
187
                      callbacks=callbacks,
188
189
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
190
                      validation_freq=flags_obj.epochs_between_evals,
191
                      verbose=2)
192
  eval_output = None
193
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
194
195
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
196
                                 verbose=2)
197
  stats = keras_common.build_stats(history, eval_output, callbacks)
198
  return stats
199

200
201

def main(_):
202
  with logger.benchmark_context(flags.FLAGS):
203
    return run(flags.FLAGS)
204
205
206


if __name__ == '__main__':
207
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
208
  cifar_main.define_cifar_flags()
Shining Sun's avatar
Shining Sun committed
209
  keras_common.define_keras_flags()
210
  absl_app.run(main)