keras_cifar_main.py 8.2 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
23
import tensorflow as tf
24

25
from official.resnet.keras import cifar_preprocessing
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
Toby Boyd's avatar
Toby Boyd committed
31
from official.utils.misc import keras_utils
32
33


34
35
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
36
37
]

38

39
40
41
42
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
Shining Sun's avatar
Shining Sun committed
43
  """Handles linear scaling rule and LR decay.
44

45
46
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
47
48
49
50

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
51
52
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
53
54
55
56

  Returns:
    Adjusted learning rate.
  """
57
  del current_batch, batches_per_epoch  # not used
Shining Sun's avatar
Shining Sun committed
58
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
59
  learning_rate = initial_learning_rate
60
  for mult, start_epoch in LR_SCHEDULE:
61
62
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
63
64
65
66
67
    else:
      break
  return learning_rate


Shining Sun's avatar
Shining Sun committed
68
69
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
70
71
72
73
74
75

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
76
77
78

  Returns:
    Dictionary of training and eval stats.
79
  """
80
81
82
83
84
85
86
87
88
89
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla,
      enable_grappler_layout_optimizer=
      flags_obj.enable_grappler_layout_optimizer)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    keras_common.set_gpu_thread_mode_and_count(flags_obj)
  keras_common.set_cudnn_batchnorm_mode()
90

91
92
93
94
95
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

96
97
98
99
100
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
101

102
103
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
104
105
106
107
      num_gpus=flags_obj.num_gpus,
      num_workers=distribution_utils.configure_cluster(),
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)
108

109
110
111
112
113
114
115
116
  if strategy:
    # flags_obj.enable_get_next_as_optional controls whether enabling
    # get_next_as_optional behavior in DistributedIterator. If true, last
    # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
        flags_obj.enable_get_next_as_optional
    )

117
  strategy_scope = distribution_utils.get_strategy_scope(strategy)
118

119
  if flags_obj.use_synthetic_data:
120
    distribution_utils.set_up_synthetic_data()
Shining Sun's avatar
Shining Sun committed
121
    input_fn = keras_common.get_synth_input_fn(
122
123
124
125
        height=cifar_preprocessing.HEIGHT,
        width=cifar_preprocessing.WIDTH,
        num_channels=cifar_preprocessing.NUM_CHANNELS,
        num_classes=cifar_preprocessing.NUM_CLASSES,
126
127
        dtype=flags_core.get_tf_dtype(flags_obj),
        drop_remainder=True)
128
  else:
129
    distribution_utils.undo_set_up_synthetic_data()
130
    input_fn = cifar_preprocessing.input_fn
Shining Sun's avatar
Shining Sun committed
131
132
133
134

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
135
      batch_size=flags_obj.batch_size,
Shining Sun's avatar
Shining Sun committed
136
      num_epochs=flags_obj.train_epochs,
137
      parse_record_fn=cifar_preprocessing.parse_record,
138
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
139
140
141
142
143
      dtype=dtype,
      # Setting drop_remainder to avoid the partial batch logic in normalization
      # layer, which triggers tf.where and leads to extra memory copy of input
      # sizes between host and GPU.
      drop_remainder=(not flags_obj.enable_get_next_as_optional))
144
145
146
147
148
149
150
151

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
152
        parse_record_fn=cifar_preprocessing.parse_record)
153

Shining Sun's avatar
Shining Sun committed
154
  with strategy_scope:
Shining Sun's avatar
Shining Sun committed
155
    optimizer = keras_common.get_optimizer()
156
    model = resnet_cifar_model.resnet56(classes=cifar_preprocessing.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
157

158
159
160
161
162
163
164
    model.compile(
        loss='categorical_crossentropy',
        optimizer=optimizer,
        metrics=(['categorical_accuracy']
                 if flags_obj.report_accuracy_metrics else None),
        run_eagerly=flags_obj.run_eagerly,
        experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
Shining Sun's avatar
Shining Sun committed
165

166
  callbacks = keras_common.get_callbacks(
167
      learning_rate_schedule, cifar_preprocessing.NUM_IMAGES['train'])
168

169
  train_steps = cifar_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size
Shining Sun's avatar
Shining Sun committed
170
171
172
173
174
175
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

176
  num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
177
178
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
179
180
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
181
182
183
184
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
Shining Sun's avatar
Shining Sun committed
185
186
187
    num_eval_steps = None
    validation_data = None

188
189
190
191
192
193
  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

194
  history = model.fit(train_input_dataset,
195
196
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
197
                      callbacks=callbacks,
198
199
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
200
                      validation_freq=flags_obj.epochs_between_evals,
201
                      verbose=2)
202
  eval_output = None
203
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
204
205
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
206
                                 verbose=2)
207
208
209
210

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

211
  stats = keras_common.build_stats(history, eval_output, callbacks)
212
  return stats
213

214

215
216
217
218
219
220
221
222
223
224
def define_cifar_flags():
  keras_common.define_keras_flags(dynamic_loss_scale=False)

  flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin',
                          model_dir='/tmp/cifar10_model',
                          train_epochs=182,
                          epochs_between_evals=10,
                          batch_size=128)


225
def main(_):
226
  with logger.benchmark_context(flags.FLAGS):
227
    return run(flags.FLAGS)
228
229
230


if __name__ == '__main__':
231
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
232
  define_cifar_flags()
233
  absl_app.run(main)