ncf_main.py 16.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
20

21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
26
import heapq
27
28
import json
import logging
29
import math
30
import multiprocessing
31
import os
32
33
import signal
import typing
34

35
# pylint: disable=g-bad-import-order
36
import numpy as np
37
38
from absl import app as absl_app
from absl import flags
39
import tensorflow as tf
40
# pylint: enable=g-bad-import-order
41

Reed's avatar
Reed committed
42
from tensorflow.contrib.compiler import xla
43
from official.datasets import movielens
44
from official.recommendation import constants as rconst
45
from official.recommendation import data_pipeline
46
from official.recommendation import data_preprocessing
47
from official.recommendation import neumf_model
48
49
50
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
51
from official.utils.logs import mlperf_helper
52
from official.utils.misc import distribution_utils
53
from official.utils.misc import model_helpers
54
55


Reed's avatar
Reed committed
56
57
58
FLAGS = flags.FLAGS


59
def construct_estimator(model_dir, params):
60
  """Construct either an Estimator or TPUEstimator for NCF.
61
62

  Args:
63
64
    model_dir: The model directory for the estimator
    params: The params dict for the estimator
65
66

  Returns:
67
    An Estimator or TPUEstimator.
68
69
  """

70
  if params["use_tpu"]:
71
72
73
74
75
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)

76
77
78
79
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
80
        coordinator_name="coordinator"
81
    )
82

83
84
    tf.logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
    os.environ['TF_CONFIG'] = json.dumps(tf_config_env)

    distribution = tf.contrib.distribute.TPUStrategy(
        tpu_cluster_resolver, 100, params["batches_per_step"])

  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])

104
105
  run_config = tf.estimator.RunConfig(train_distribute=distribution,
                                      eval_distribute=distribution)
106

Reed's avatar
Reed committed
107
108
109
110
111
112
  model_fn = neumf_model.neumf_model_fn
  if params["use_xla_for_gpu"]:
    tf.logging.info("Using XLA for GPU for training and evaluation.")
    model_fn = xla.estimator_model_fn(model_fn)
  estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir,
                                     config=run_config, params=params)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
  return estimator


def log_and_get_hooks(eval_batch_size):
  """Convenience method for hook and logger creation."""
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
      model_dir=FLAGS.model_dir,
      batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
      tensors_to_log={"cross_entropy": "cross_entropy"}
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
      "eval_batch_size": eval_batch_size,
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
  benchmark_logger = logger.get_benchmark_logger()
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)

  return benchmark_logger, train_hooks


def parse_flags(flags_obj):
  """Convenience method to turn flags into params."""
  num_gpus = flags_core.get_num_gpus(flags_obj)
  num_devices = FLAGS.num_tpu_shards if FLAGS.tpu else num_gpus or 1

  batch_size = distribution_utils.per_device_batch_size(
      (int(flags_obj.batch_size) + num_devices - 1) //
      num_devices * num_devices, num_devices)

  eval_divisor = (rconst.NUM_EVAL_NEGATIVES + 1) * num_devices
  eval_batch_size = int(flags_obj.eval_batch_size or flags_obj.batch_size or 1)
  eval_batch_size = distribution_utils.per_device_batch_size(
      (eval_batch_size + eval_divisor - 1) //
      eval_divisor * eval_divisor, num_devices)

  return {
      "train_epochs": flags_obj.train_epochs,
      "batches_per_step": num_devices,
      "use_seed": flags_obj.seed is not None,
      "hash_pipeline": flags_obj.hash_pipeline,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
      "use_xla_for_gpu": flags_obj.use_xla_for_gpu,
      "epochs_between_evals": FLAGS.epochs_between_evals,
  }
182
183
184


def main(_):
Reed's avatar
Reed committed
185
186
  with logger.benchmark_context(FLAGS), \
       mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
187
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
188
189
190
191
192
    run_ncf(FLAGS)


def run_ncf(_):
  """Run NCF training and eval loop."""
193
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
194
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
195

196
197
198
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

199
  params = parse_flags(FLAGS)
200
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
201

202
  if FLAGS.use_synthetic_data:
203
    producer = data_pipeline.DummyConstructor()
204
205
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
206
207
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
208
  else:
209
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
210
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir,
211
        deterministic=FLAGS.seed is not None, params=params)
212

213
214
215
216
217
218
219
    num_train_steps = (producer.train_batches_per_epoch //
                       params["batches_per_step"])
    num_eval_steps = (producer.eval_batches_per_epoch //
                      params["batches_per_step"])
    assert not producer.train_batches_per_epoch % params["batches_per_step"]
    assert not producer.eval_batches_per_epoch % params["batches_per_step"]
  producer.start()
220

221
222
  params["num_users"], params["num_items"] = num_users, num_items
  model_helpers.apply_clean(flags.FLAGS)
223

224
  estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params)
225

226
  benchmark_logger, train_hooks = log_and_get_hooks(params["eval_batch_size"])
227

228
229
  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
230
  for cycle_index in range(total_training_cycle):
231
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
232
    tf.logging.info("Starting a training cycle: {}/{}".format(
233
        cycle_index + 1, total_training_cycle))
234

235
236
237
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

238
239
240
241
242
243
244
245
246
247
248
249
    train_input_fn = producer.make_input_fn(is_training=True)
    estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                    steps=num_train_steps)

    tf.logging.info("Beginning evaluation.")
    eval_input_fn = producer.make_input_fn(is_training=False)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                            value=cycle_index)
    eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps)
    tf.logging.info("Evaluation complete.")

250
251
    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])
252
    loss = float(eval_results["loss"])
253

254
255
256
257
258
259
260
261
262
263
264
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

265
266
267
    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
268
    tf.logging.info(
269
270
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format(
            cycle_index + 1, hr, ndcg, loss))
271
272
273

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
274
      target_reached = True
275
276
      break

277
278
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
279
280
  producer.stop_loop()
  producer.join()
281

282
283
284
  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()

285
286
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)

287
288
289
290
291
292
293
294
295

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
296
      synthetic_data=True,
297
      max_train_steps=False,
298
299
      dtype=False,
      all_reduce_alg=False
300
  )
301
  flags_core.define_device(tpu=True)
302
303
304
305
306
307
308
309
310
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
311
312
313
      hooks="ProfilerHook",
      tpu=None
  )
314
315
316
317
318
319
320
321

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

322
323
324
325
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

326
327
328
329
330
331
332
  flags.DEFINE_string(
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

366
367
368
369
370
371
372
373
374
375
376
377
378
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

379
380
381
382
383
384
385
386
  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
387

388
  flags.DEFINE_bool(
389
      name="ml_perf", default=False,
390
391
392
393
394
395
396
397
398
399
400
401
402
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
403
404
405
406
407
408
409
410
411
412
413
414
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

415
416
417
418
419
420
421
422
423
424
425
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

  flags.DEFINE_bool(
      name="hash_pipeline", default=False, help=flags_core.help_wrap(
          "This flag will perform a separate run of the pipeline and hash "
          "batches as they are produced. \nNOTE: this will significantly slow "
          "training. However it is useful to confirm that a random seed is "
          "does indeed make the data pipeline deterministic."))

426
427
428
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
429
430
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
431

Reed's avatar
Reed committed
432
433
434
435
436
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

437
438
439
440
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
441

442
443
444

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
445
446
  define_ncf_flags()
  absl_app.run(main)