ncf_main.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
20

21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
26
27
import heapq
import math
28
import multiprocessing
29
import os
30
31
import signal
import typing
32

33
# pylint: disable=g-bad-import-order
34
import numpy as np
35
36
from absl import app as absl_app
from absl import flags
37
import tensorflow as tf
38
# pylint: enable=g-bad-import-order
39

Reed's avatar
Reed committed
40
from tensorflow.contrib.compiler import xla
41
from official.datasets import movielens
42
43
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
44
from official.recommendation import neumf_model
45
46
47
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
48
from official.utils.logs import mlperf_helper
49
from official.utils.misc import distribution_utils
50
from official.utils.misc import model_helpers
51
52


53
54
55
def construct_estimator(num_gpus, model_dir, params, batch_size,
                        eval_batch_size):
  """Construct either an Estimator or TPUEstimator for NCF.
56
57

  Args:
58
59
60
61
62
    num_gpus: The number of gpus (Used to select distribution strategy)
    model_dir: The model directory for the estimator
    params: The params dict for the estimator
    batch_size: The mini-batch size for training.
    eval_batch_size: The batch size used during evaluation.
63
64

  Returns:
65
    An Estimator or TPUEstimator.
66
67
  """

68
69
70
71
72
73
  if params["use_tpu"]:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
    )
74
75
    tf.logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    tpu_config = tf.contrib.tpu.TPUConfig(
        iterations_per_loop=100,
        num_shards=8)

    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        model_dir=model_dir,
        session_config=tf.ConfigProto(
            allow_soft_placement=True, log_device_placement=False),
        tpu_config=tpu_config)

    tpu_params = {k: v for k, v in params.items() if k != "batch_size"}

    train_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=True,
        train_batch_size=batch_size,
        params=tpu_params,
        config=run_config)

    eval_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=False,
        train_batch_size=1,
101
        eval_batch_size=eval_batch_size,
102
103
104
105
106
107
        params=tpu_params,
        config=run_config)

    return train_estimator, eval_estimator

  distribution = distribution_utils.get_distribution_strategy(num_gpus=num_gpus)
108
109
  run_config = tf.estimator.RunConfig(train_distribute=distribution,
                                      eval_distribute=distribution)
110
  params["eval_batch_size"] = eval_batch_size
Reed's avatar
Reed committed
111
112
113
114
115
116
  model_fn = neumf_model.neumf_model_fn
  if params["use_xla_for_gpu"]:
    tf.logging.info("Using XLA for GPU for training and evaluation.")
    model_fn = xla.estimator_model_fn(model_fn)
  estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir,
                                     config=run_config, params=params)
117
  return estimator, estimator
118
119
120


def main(_):
121
122
  with logger.benchmark_context(FLAGS), mlperf_helper.LOGGER(FLAGS.ml_perf):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
123
    run_ncf(FLAGS)
124
    mlperf_helper.stitch_ncf()
125
126
127
128


def run_ncf(_):
  """Run NCF training and eval loop."""
129
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
130
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
131

132
133
134
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

135
136
137
  num_gpus = flags_core.get_num_gpus(FLAGS)
  batch_size = distribution_utils.per_device_batch_size(
      int(FLAGS.batch_size), num_gpus)
138
139

  eval_per_user = rconst.NUM_EVAL_NEGATIVES + 1
Taylor Robie's avatar
Taylor Robie committed
140
141
  eval_batch_size = int(FLAGS.eval_batch_size or
                        max([FLAGS.batch_size, eval_per_user]))
142
143
144
145
146
147
  if eval_batch_size % eval_per_user:
    eval_batch_size = eval_batch_size // eval_per_user * eval_per_user
    tf.logging.warning(
        "eval examples per user does not evenly divide eval_batch_size. "
        "Overriding to {}".format(eval_batch_size))

148
149
150
151
152
  if FLAGS.use_synthetic_data:
    ncf_dataset = None
    cleanup_fn = lambda: None
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
153
154
    num_train_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
155
156
157
158
159
160
161
162
  else:
    ncf_dataset, cleanup_fn = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir,
        batch_size=batch_size,
        eval_batch_size=eval_batch_size,
        num_neg=FLAGS.num_neg,
        epochs_per_cycle=FLAGS.epochs_between_evals,
        match_mlperf=FLAGS.ml_perf,
shizhiw's avatar
shizhiw committed
163
        deterministic=FLAGS.seed is not None,
164
165
        use_subprocess=FLAGS.use_subprocess,
        cache_id=FLAGS.cache_id)
166
167
    num_users = ncf_dataset.num_users
    num_items = ncf_dataset.num_items
168
169
170
171
172
    num_train_steps = int(np.ceil(
        FLAGS.epochs_between_evals * ncf_dataset.num_train_positives *
        (1 + FLAGS.num_neg) / FLAGS.batch_size))
    num_eval_steps = int(np.ceil((1 + rconst.NUM_EVAL_NEGATIVES) *
                                 ncf_dataset.num_users / eval_batch_size))
173
174

  model_helpers.apply_clean(flags.FLAGS)
175

176
177
  train_estimator, eval_estimator = construct_estimator(
      num_gpus=num_gpus, model_dir=FLAGS.model_dir, params={
178
179
          "use_seed": FLAGS.seed is not None,
          "hash_pipeline": FLAGS.hash_pipeline,
180
          "batch_size": batch_size,
181
          "eval_batch_size": eval_batch_size,
182
          "learning_rate": FLAGS.learning_rate,
183
184
          "num_users": num_users,
          "num_items": num_items,
185
186
187
188
          "mf_dim": FLAGS.num_factors,
          "model_layers": [int(layer) for layer in FLAGS.layers],
          "mf_regularization": FLAGS.mf_regularization,
          "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization],
189
          "num_neg": FLAGS.num_neg,
190
191
192
193
          "use_tpu": FLAGS.tpu is not None,
          "tpu": FLAGS.tpu,
          "tpu_zone": FLAGS.tpu_zone,
          "tpu_gcp_project": FLAGS.tpu_gcp_project,
194
195
196
          "beta1": FLAGS.beta1,
          "beta2": FLAGS.beta2,
          "epsilon": FLAGS.epsilon,
197
          "match_mlperf": FLAGS.ml_perf,
Reed's avatar
Reed committed
198
          "use_xla_for_gpu": FLAGS.use_xla_for_gpu,
199
      }, batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size)
200

201
202
203
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
204
      model_dir=FLAGS.model_dir,
205
206
      batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
      tensors_to_log={"cross_entropy": "cross_entropy"}
207
208
209
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
210
      "eval_batch_size": eval_batch_size,
211
212
213
214
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
215
  benchmark_logger = logger.get_benchmark_logger()
216
217
218
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
219
220
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)
221
222


223
  pred_input_fn = None
224
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
225
226
  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
227
  for cycle_index in range(total_training_cycle):
228
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
229
    tf.logging.info("Starting a training cycle: {}/{}".format(
230
        cycle_index + 1, total_training_cycle))
231

232
233
234
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

235
    # Train the model
236
    train_input_fn, train_record_dir, batch_count = \
237
238
      data_preprocessing.make_input_fn(
          ncf_dataset=ncf_dataset, is_training=True)
239

240
241
242
243
    if batch_count != num_train_steps:
      raise ValueError(
          "Step counts do not match. ({} vs. {}) The async process is "
          "producing incorrect shards.".format(batch_count, num_train_steps))
244

245
    train_estimator.train(input_fn=train_input_fn, hooks=train_hooks,
246
                          steps=num_train_steps)
247
248
    if train_record_dir:
      tf.gfile.DeleteRecursively(train_record_dir)
249

250
    tf.logging.info("Beginning evaluation.")
251
252
253
254
255
256
257
258
259
260
    if pred_input_fn is None:
      pred_input_fn, _, eval_batch_count = data_preprocessing.make_input_fn(
          ncf_dataset=ncf_dataset, is_training=False)

      if eval_batch_count != num_eval_steps:
        raise ValueError(
            "Step counts do not match. ({} vs. {}) The async process is "
            "producing incorrect shards.".format(
                eval_batch_count, num_eval_steps))

261
262
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                            value=cycle_index)
263
    eval_results = eval_estimator.evaluate(pred_input_fn, steps=num_eval_steps)
264
265
    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])
266
    tf.logging.info("Evaluation complete.")
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    # Logged by the async process during record creation.
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_USERS,
                            deferred=True)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

283
284
285
    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
286
    tf.logging.info(
287
288
289
290
291
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format(
            cycle_index + 1, hr, ndcg))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
292
      target_reached = True
293
294
      break

295
296
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
297
298
  cleanup_fn()  # Cleanup data construction artifacts and subprocess.

299
300
301
  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()

302
303
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)

304
305
306
307
308
309
310
311
312

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
313
      synthetic_data=True,
314
      max_train_steps=False,
315
316
      dtype=False,
      all_reduce_alg=False
317
  )
318
  flags_core.define_device(tpu=True)
319
320
321
322
323
324
325
326
327
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
328
329
330
      hooks="ProfilerHook",
      tpu=None
  )
331
332
333
334
335
336
337
338

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

339
340
341
342
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

343
344
345
346
347
348
349
  flags.DEFINE_string(
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

383
384
385
386
387
388
389
390
391
392
393
394
395
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

396
397
398
399
400
401
402
403
  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
404

405
  flags.DEFINE_bool(
406
      name="ml_perf", default=False,
407
408
409
410
411
412
413
414
415
416
417
418
419
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

420
421
422
423
424
425
426
427
428
429
430
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

  flags.DEFINE_bool(
      name="hash_pipeline", default=False, help=flags_core.help_wrap(
          "This flag will perform a separate run of the pipeline and hash "
          "batches as they are produced. \nNOTE: this will significantly slow "
          "training. However it is useful to confirm that a random seed is "
          "does indeed make the data pipeline deterministic."))

431
432
433
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
434
435
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
436

437
438
439
440
441
442
  flags.DEFINE_bool(
      name="use_subprocess", default=True, help=flags_core.help_wrap(
          "By default, ncf_main.py starts async data generation process as a "
          "subprocess. If set to False, ncf_main.py will assume the async data "
          "generation process has already been started by the user."))

443
444
445
446
447
448
  flags.DEFINE_integer(name="cache_id", default=None, help=flags_core.help_wrap(
      "Use a specified cache_id rather than using a timestamp. This is only "
      "needed to synchronize across multiple workers. Generally this flag will "
      "not need to be set."
  ))

Reed's avatar
Reed committed
449
450
451
452
453
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

454
455
456
457
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
458

459
460
461

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
462
463
464
  define_ncf_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)