ncf_main.py 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
20

21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
26
import contextlib
import gc
27
28
import heapq
import math
29
import multiprocessing
30
import os
31
32
import signal
import typing
33

34
# pylint: disable=g-bad-import-order
35
import numpy as np
36
37
from absl import app as absl_app
from absl import flags
38
import tensorflow as tf
39
# pylint: enable=g-bad-import-order
40

41
from official.datasets import movielens
42
43
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
44
from official.recommendation import neumf_model
45
46
47
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
48
from official.utils.misc import distribution_utils
49
from official.utils.misc import model_helpers
50
51

_TOP_K = 10  # Top-k list for evaluation
52
53
54
# keys for evaluation metrics
_HR_KEY = "HR"
_NDCG_KEY = "NDCG"
55
56


57
58
def evaluate_model(estimator, ncf_dataset, pred_input_fn):
  # type: (tf.estimator.Estimator, prepare.NCFDataset, typing.Callable) -> dict
59
60
61
  """Model evaluation with HR and NDCG metrics.

  The evaluation protocol is to rank the test interacted item (truth items)
62
  among the randomly chosen 999 items that are not interacted by the user.
63
64
65
66
67
68
69
70
71
72
73
  The performance of the ranked list is judged by Hit Ratio (HR) and Normalized
  Discounted Cumulative Gain (NDCG).

  For evaluation, the ranked list is truncated at 10 for both metrics. As such,
  the HR intuitively measures whether the test item is present on the top-10
  list, and the NDCG accounts for the position of the hit by assigning higher
  scores to hits at top ranks. Both metrics are calculated for each test user,
  and the average scores are reported.

  Args:
    estimator: The Estimator.
74
75
    ncf_dataset: An NCFDataSet object, which contains the information about
      test/eval dataset, such as:
76
77
78
        num_users: How many unique users are in the eval set.
        test_data: The points which are used for consistent evaluation. These
          are already included in the pred_input_fn.
79
    pred_input_fn: The input function for the test data.
80
81

  Returns:
82
83
84
85
86
87
88
89
90
    eval_results: A dict of evaluation results for benchmark logging.
      eval_results = {
        _HR_KEY: hr,
        _NDCG_KEY: ndcg,
        tf.GraphKeys.GLOBAL_STEP: global_step
      }
      where hr is an integer indicating the average HR scores across all users,
      ndcg is an integer representing the average NDCG scores across all users,
      and global_step is the global step
91
92
  """

93
  tf.logging.info("Computing predictions for eval set...")
94

95
96
97
  # Get predictions
  predictions = estimator.predict(input_fn=pred_input_fn,
                                  yield_single_examples=False)
98

99
  prediction_batches = [p[movielens.RATING_COLUMN] for p in predictions]
100
101

  # Reshape the predicted scores and each user takes one row
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  prediction_with_padding = np.concatenate(prediction_batches, axis=0)
  predicted_scores_by_user = prediction_with_padding[
      :ncf_dataset.num_users * (1 + rconst.NUM_EVAL_NEGATIVES)]\
      .reshape(ncf_dataset.num_users, -1)

  tf.logging.info("Computing metrics...")

  # NumPy has an np.argparition() method, however log(1000) is so small that
  # sorting the whole array is simpler and fast enough.
  top_indicies = np.argsort(predicted_scores_by_user, axis=1)[:, -_TOP_K:]
  top_indicies = np.flip(top_indicies, axis=1)

  # Both HR and NDCG vectorized computation takes advantage of the fact that if
  # the positive example for a user is not in the top k, that index does not
  # appear. That is to say:   hit_ind.shape[0] <= num_users
  hit_ind = np.argwhere(np.equal(top_indicies, 0))
  hr = hit_ind.shape[0] / ncf_dataset.num_users
  ndcg = np.sum(np.log(2) / np.log(hit_ind[:, 1] + 2)) / ncf_dataset.num_users

121
122
123
124
125
126
  global_step = estimator.get_variable_value(tf.GraphKeys.GLOBAL_STEP)
  eval_results = {
      _HR_KEY: hr,
      _NDCG_KEY: ndcg,
      tf.GraphKeys.GLOBAL_STEP: global_step
  }
127

128
  return eval_results
129
130


131
132
133
def construct_estimator(num_gpus, model_dir, params, batch_size,
                        eval_batch_size):
  """Construct either an Estimator or TPUEstimator for NCF.
134
135

  Args:
136
137
138
139
140
    num_gpus: The number of gpus (Used to select distribution strategy)
    model_dir: The model directory for the estimator
    params: The params dict for the estimator
    batch_size: The mini-batch size for training.
    eval_batch_size: The batch size used during evaluation.
141
142

  Returns:
143
    An Estimator or TPUEstimator.
144
145
  """

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
  if params["use_tpu"]:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
    )

    tpu_config = tf.contrib.tpu.TPUConfig(
        iterations_per_loop=100,
        num_shards=8)

    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        model_dir=model_dir,
        session_config=tf.ConfigProto(
            allow_soft_placement=True, log_device_placement=False),
        tpu_config=tpu_config)

    tpu_params = {k: v for k, v in params.items() if k != "batch_size"}

    train_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=True,
        train_batch_size=batch_size,
        params=tpu_params,
        config=run_config)

    eval_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=False,
        train_batch_size=1,
        predict_batch_size=eval_batch_size,
        params=tpu_params,
        config=run_config)

    return train_estimator, eval_estimator

  distribution = distribution_utils.get_distribution_strategy(num_gpus=num_gpus)
184
  run_config = tf.estimator.RunConfig(train_distribute=distribution)
185
186
187
188
189
  params["eval_batch_size"] = eval_batch_size
  estimator = tf.estimator.Estimator(model_fn=neumf_model.neumf_model_fn,
                                     model_dir=model_dir, config=run_config,
                                     params=params)
  return estimator, estimator
190
191
192


def main(_):
193
194
195
196
197
198
  with logger.benchmark_context(FLAGS):
    run_ncf(FLAGS)


def run_ncf(_):
  """Run NCF training and eval loop."""
199
200
  if FLAGS.download_if_missing:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
201

202
203
204
  num_gpus = flags_core.get_num_gpus(FLAGS)
  batch_size = distribution_utils.per_device_batch_size(
      int(FLAGS.batch_size), num_gpus)
205
  eval_batch_size = int(FLAGS.eval_batch_size or FLAGS.batch_size)
206
207
208
209
210
211
  ncf_dataset = data_preprocessing.instantiate_pipeline(
      dataset=FLAGS.dataset, data_dir=FLAGS.data_dir,
      batch_size=batch_size,
      eval_batch_size=eval_batch_size,
      num_neg=FLAGS.num_neg,
      epochs_per_cycle=FLAGS.epochs_between_evals)
212
213

  model_helpers.apply_clean(flags.FLAGS)
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  train_estimator, eval_estimator = construct_estimator(
      num_gpus=num_gpus, model_dir=FLAGS.model_dir, params={
          "batch_size": batch_size,
          "learning_rate": FLAGS.learning_rate,
          "num_users": ncf_dataset.num_users,
          "num_items": ncf_dataset.num_items,
          "mf_dim": FLAGS.num_factors,
          "model_layers": [int(layer) for layer in FLAGS.layers],
          "mf_regularization": FLAGS.mf_regularization,
          "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization],
          "use_tpu": FLAGS.tpu is not None,
          "tpu": FLAGS.tpu,
          "tpu_zone": FLAGS.tpu_zone,
          "tpu_gcp_project": FLAGS.tpu_gcp_project,
      }, batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size)
230

231
232
233
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
234
      model_dir=FLAGS.model_dir,
235
236
237
238
      batch_size=FLAGS.batch_size  # for ExamplesPerSecondHook
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
239
      "eval_batch_size": eval_batch_size,
240
241
242
243
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
244
  benchmark_logger = logger.get_benchmark_logger()
245
246
247
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
248
249
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)
250

251
252
253
  approx_train_steps = int(ncf_dataset.num_train_positives
                           * (1 + FLAGS.num_neg) // FLAGS.batch_size)
  pred_input_fn = data_preprocessing.make_pred_input_fn(ncf_dataset=ncf_dataset)
254
255

  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
256
257
  for cycle_index in range(total_training_cycle):
    tf.logging.info("Starting a training cycle: {}/{}".format(
258
        cycle_index + 1, total_training_cycle))
259

260

261
    # Train the model
262
263
264
265
266
267
268
269
270
271
    train_input_fn, train_record_dir, batch_count = \
      data_preprocessing.make_train_input_fn(ncf_dataset=ncf_dataset)

    if np.abs(approx_train_steps - batch_count) > 1:
      tf.logging.warning(
          "Estimated ({}) and reported ({}) number of batches differ by more "
          "than one".format(approx_train_steps, batch_count))
    train_estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                          steps=batch_count)
    tf.gfile.DeleteRecursively(train_record_dir)
272
273

    # Evaluate the model
274
    eval_results = evaluate_model(
275
        eval_estimator, ncf_dataset, pred_input_fn)
276
277
278
279
280
281

    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
    hr = eval_results[_HR_KEY]
    ndcg = eval_results[_NDCG_KEY]
282
    tf.logging.info(
283
284
285
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format(
            cycle_index + 1, hr, ndcg))

286
287
288
289
    # Some of the NumPy vector math can be quite large and likes to stay in
    # memory for a while.
    gc.collect()

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
      break

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()


def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
      synthetic_data=False,
      max_train_steps=False,
308
309
      dtype=False,
      all_reduce_alg=False
310
  )
311
  flags_core.define_device(tpu=True)
312
313
314
315
316
317
318
319
320
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
321
322
323
      hooks="ProfilerHook",
      tpu=None
  )
324
325
326
327
328
329
330
331

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

332
333
334
335
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

336
337
338
339
340
341
342
  flags.DEFINE_string(
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
384
385
386
387


if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
388
389
390
  define_ncf_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)