ncf_main.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
20

21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
26
27
import heapq
import math
28
import multiprocessing
29
import os
30
31
import signal
import typing
32

33
# pylint: disable=g-bad-import-order
34
import numpy as np
35
36
from absl import app as absl_app
from absl import flags
37
import tensorflow as tf
38
# pylint: enable=g-bad-import-order
39

Reed's avatar
Reed committed
40
from tensorflow.contrib.compiler import xla
41
from official.datasets import movielens
42
43
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
44
from official.recommendation import neumf_model
45
46
47
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
48
from official.utils.misc import distribution_utils
49
from official.utils.misc import model_helpers
50
51


52
53
54
def construct_estimator(num_gpus, model_dir, params, batch_size,
                        eval_batch_size):
  """Construct either an Estimator or TPUEstimator for NCF.
55
56

  Args:
57
58
59
60
61
    num_gpus: The number of gpus (Used to select distribution strategy)
    model_dir: The model directory for the estimator
    params: The params dict for the estimator
    batch_size: The mini-batch size for training.
    eval_batch_size: The batch size used during evaluation.
62
63

  Returns:
64
    An Estimator or TPUEstimator.
65
66
  """

67
68
69
70
71
72
  if params["use_tpu"]:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
    )
73
74
    tf.logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    tpu_config = tf.contrib.tpu.TPUConfig(
        iterations_per_loop=100,
        num_shards=8)

    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        model_dir=model_dir,
        session_config=tf.ConfigProto(
            allow_soft_placement=True, log_device_placement=False),
        tpu_config=tpu_config)

    tpu_params = {k: v for k, v in params.items() if k != "batch_size"}

    train_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=True,
        train_batch_size=batch_size,
        params=tpu_params,
        config=run_config)

    eval_estimator = tf.contrib.tpu.TPUEstimator(
        model_fn=neumf_model.neumf_model_fn,
        use_tpu=False,
        train_batch_size=1,
100
        eval_batch_size=eval_batch_size,
101
102
103
104
105
106
        params=tpu_params,
        config=run_config)

    return train_estimator, eval_estimator

  distribution = distribution_utils.get_distribution_strategy(num_gpus=num_gpus)
107
  run_config = tf.estimator.RunConfig(train_distribute=distribution)
108
  params["eval_batch_size"] = eval_batch_size
Reed's avatar
Reed committed
109
110
111
112
113
114
  model_fn = neumf_model.neumf_model_fn
  if params["use_xla_for_gpu"]:
    tf.logging.info("Using XLA for GPU for training and evaluation.")
    model_fn = xla.estimator_model_fn(model_fn)
  estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir,
                                     config=run_config, params=params)
115
  return estimator, estimator
116
117
118


def main(_):
119
120
121
122
123
124
  with logger.benchmark_context(FLAGS):
    run_ncf(FLAGS)


def run_ncf(_):
  """Run NCF training and eval loop."""
125
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
126
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
127

128
129
130
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)

131
132
133
  num_gpus = flags_core.get_num_gpus(FLAGS)
  batch_size = distribution_utils.per_device_batch_size(
      int(FLAGS.batch_size), num_gpus)
134
135

  eval_per_user = rconst.NUM_EVAL_NEGATIVES + 1
Taylor Robie's avatar
Taylor Robie committed
136
137
  eval_batch_size = int(FLAGS.eval_batch_size or
                        max([FLAGS.batch_size, eval_per_user]))
138
139
140
141
142
143
  if eval_batch_size % eval_per_user:
    eval_batch_size = eval_batch_size // eval_per_user * eval_per_user
    tf.logging.warning(
        "eval examples per user does not evenly divide eval_batch_size. "
        "Overriding to {}".format(eval_batch_size))

144
145
146
147
148
  if FLAGS.use_synthetic_data:
    ncf_dataset = None
    cleanup_fn = lambda: None
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
149
150
    num_train_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = data_preprocessing.SYNTHETIC_BATCHES_PER_EPOCH
151
152
153
154
155
156
157
158
  else:
    ncf_dataset, cleanup_fn = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir,
        batch_size=batch_size,
        eval_batch_size=eval_batch_size,
        num_neg=FLAGS.num_neg,
        epochs_per_cycle=FLAGS.epochs_between_evals,
        match_mlperf=FLAGS.ml_perf,
shizhiw's avatar
shizhiw committed
159
        deterministic=FLAGS.seed is not None,
160
161
        use_subprocess=FLAGS.use_subprocess,
        cache_id=FLAGS.cache_id)
162
163
    num_users = ncf_dataset.num_users
    num_items = ncf_dataset.num_items
164
165
166
167
168
    num_train_steps = int(np.ceil(
        FLAGS.epochs_between_evals * ncf_dataset.num_train_positives *
        (1 + FLAGS.num_neg) / FLAGS.batch_size))
    num_eval_steps = int(np.ceil((1 + rconst.NUM_EVAL_NEGATIVES) *
                                 ncf_dataset.num_users / eval_batch_size))
169
170

  model_helpers.apply_clean(flags.FLAGS)
171

172
173
  train_estimator, eval_estimator = construct_estimator(
      num_gpus=num_gpus, model_dir=FLAGS.model_dir, params={
174
175
          "use_seed": FLAGS.seed is not None,
          "hash_pipeline": FLAGS.hash_pipeline,
176
          "batch_size": batch_size,
177
          "eval_batch_size": eval_batch_size,
178
          "learning_rate": FLAGS.learning_rate,
179
180
          "num_users": num_users,
          "num_items": num_items,
181
182
183
184
          "mf_dim": FLAGS.num_factors,
          "model_layers": [int(layer) for layer in FLAGS.layers],
          "mf_regularization": FLAGS.mf_regularization,
          "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization],
185
          "num_neg": FLAGS.num_neg,
186
187
188
189
          "use_tpu": FLAGS.tpu is not None,
          "tpu": FLAGS.tpu,
          "tpu_zone": FLAGS.tpu_zone,
          "tpu_gcp_project": FLAGS.tpu_gcp_project,
190
191
192
          "beta1": FLAGS.beta1,
          "beta2": FLAGS.beta2,
          "epsilon": FLAGS.epsilon,
193
          "match_mlperf": FLAGS.ml_perf,
Reed's avatar
Reed committed
194
          "use_xla_for_gpu": FLAGS.use_xla_for_gpu,
195
      }, batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size)
196

197
198
199
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
200
      model_dir=FLAGS.model_dir,
201
202
      batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
      tensors_to_log={"cross_entropy": "cross_entropy"}
203
204
205
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
206
      "eval_batch_size": eval_batch_size,
207
208
209
210
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
211
  benchmark_logger = logger.get_benchmark_logger()
212
213
214
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
215
216
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)
217
218


219
  pred_input_fn = None
220
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
221
222
  for cycle_index in range(total_training_cycle):
    tf.logging.info("Starting a training cycle: {}/{}".format(
223
        cycle_index + 1, total_training_cycle))
224
225

    # Train the model
226
    train_input_fn, train_record_dir, batch_count = \
227
228
      data_preprocessing.make_input_fn(
          ncf_dataset=ncf_dataset, is_training=True)
229

230
231
232
233
    if batch_count != num_train_steps:
      raise ValueError(
          "Step counts do not match. ({} vs. {}) The async process is "
          "producing incorrect shards.".format(batch_count, num_train_steps))
234

235
    train_estimator.train(input_fn=train_input_fn, hooks=train_hooks,
236
                          steps=num_train_steps)
237
238
    if train_record_dir:
      tf.gfile.DeleteRecursively(train_record_dir)
239

240
    tf.logging.info("Beginning evaluation.")
241
242
243
244
245
246
247
248
249
250
251
    if pred_input_fn is None:
      pred_input_fn, _, eval_batch_count = data_preprocessing.make_input_fn(
          ncf_dataset=ncf_dataset, is_training=False)

      if eval_batch_count != num_eval_steps:
        raise ValueError(
            "Step counts do not match. ({} vs. {}) The async process is "
            "producing incorrect shards.".format(
                eval_batch_count, num_eval_steps))

    eval_results = eval_estimator.evaluate(pred_input_fn, steps=num_eval_steps)
252
    tf.logging.info("Evaluation complete.")
253
254
255
256

    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
257
258
    hr = eval_results[rconst.HR_KEY]
    ndcg = eval_results[rconst.NDCG_KEY]
259
    tf.logging.info(
260
261
262
263
264
265
266
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format(
            cycle_index + 1, hr, ndcg))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
      break

267
268
  cleanup_fn()  # Cleanup data construction artifacts and subprocess.

269
270
271
272
273
274
275
276
277
278
279
280
  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()


def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
281
      synthetic_data=True,
282
      max_train_steps=False,
283
284
      dtype=False,
      all_reduce_alg=False
285
  )
286
  flags_core.define_device(tpu=True)
287
288
289
290
291
292
293
294
295
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
296
297
298
      hooks="ProfilerHook",
      tpu=None
  )
299
300
301
302
303
304
305
306

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

307
308
309
310
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

311
312
313
314
315
316
317
  flags.DEFINE_string(
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

351
352
353
354
355
356
357
358
359
360
361
362
363
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

364
365
366
367
368
369
370
371
  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  flags.DEFINE_bool(
      name="ml_perf", default=None,
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

388
389
390
391
392
393
394
395
396
397
398
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

  flags.DEFINE_bool(
      name="hash_pipeline", default=False, help=flags_core.help_wrap(
          "This flag will perform a separate run of the pipeline and hash "
          "batches as they are produced. \nNOTE: this will significantly slow "
          "training. However it is useful to confirm that a random seed is "
          "does indeed make the data pipeline deterministic."))

399
400
401
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
402
403
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
404

405
406
407
408
409
410
  flags.DEFINE_bool(
      name="use_subprocess", default=True, help=flags_core.help_wrap(
          "By default, ncf_main.py starts async data generation process as a "
          "subprocess. If set to False, ncf_main.py will assume the async data "
          "generation process has already been started by the user."))

411
412
413
414
415
416
  flags.DEFINE_integer(name="cache_id", default=None, help=flags_core.help_wrap(
      "Use a specified cache_id rather than using a timestamp. This is only "
      "needed to synchronize across multiple workers. Generally this flag will "
      "not need to be set."
  ))

Reed's avatar
Reed committed
417
418
419
420
421
422
423
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

  flags.mark_flags_as_mutual_exclusive(["use_xla_for_gpu", "tpu"])

424
425
426

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
427
428
429
  define_ncf_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)