ncf_common.py 12 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
"""Common functionalities used by both Keras and Estimator implementations."""
16

17
18
19
20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
import os

24
from absl import flags
25
from absl import logging
26
import numpy as np
27
28
import tensorflow as tf

29
from official.common import distribute_utils
30
from official.recommendation import constants as rconst
31
from official.recommendation import data_pipeline
32
from official.recommendation import data_preprocessing
33
from official.recommendation import movielens
34
from official.utils.flags import core as flags_core
35

Reed's avatar
Reed committed
36
37
38
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
39
40
41
42
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
43

Shining Sun's avatar
Shining Sun committed
44
45
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
46

Shining Sun's avatar
Shining Sun committed
47
48
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
49
    num_users, num_items = movielens.DATASET_TO_NUM_USERS_AND_ITEMS[
Shining Sun's avatar
Shining Sun committed
50
51
52
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
53
  else:
Shining Sun's avatar
Shining Sun committed
54
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
Hongkun Yu's avatar
Hongkun Yu committed
55
56
57
        dataset=FLAGS.dataset,
        data_dir=FLAGS.data_dir,
        params=params,
Shining Sun's avatar
Shining Sun committed
58
59
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
60
61
    num_train_steps = producer.train_batches_per_epoch
    num_eval_steps = producer.eval_batches_per_epoch
62

Shining Sun's avatar
Shining Sun committed
63
  return num_users, num_items, num_train_steps, num_eval_steps, producer
64
65
66


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
67
  """Convenience function to turn flags into params."""
68
69
  num_gpus = flags_core.get_num_gpus(flags_obj)

70
  batch_size = flags_obj.batch_size
Taylor Robie's avatar
Taylor Robie committed
71
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
72
73
74

  return {
      "train_epochs": flags_obj.train_epochs,
75
      "batches_per_step": 1,
76
77
78
79
80
81
82
83
84
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
85
      "distribution_strategy": flags_obj.distribution_strategy,
86
87
88
89
90
91
92
93
94
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
Yuefeng Zhou's avatar
Yuefeng Zhou committed
95
      "epochs_between_evals": flags_obj.epochs_between_evals,
96
      "keras_use_ctl": flags_obj.keras_use_ctl,
97
      "hr_threshold": flags_obj.hr_threshold,
98
      "stream_files": flags_obj.tpu is not None,
99
100
101
      "train_dataset_path": flags_obj.train_dataset_path,
      "eval_dataset_path": flags_obj.eval_dataset_path,
      "input_meta_data_path": flags_obj.input_meta_data_path,
102
  }
103
104


105
def get_v1_distribution_strategy(params):
Shining Sun's avatar
Shining Sun committed
106
107
108
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
Hongkun Yu's avatar
Hongkun Yu committed
109
110
111
112
    for name in [
        "googleapiclient.discovery", "googleapiclient.discovery_cache",
        "oauth2client.transport"
    ]:
Shining Sun's avatar
Shining Sun committed
113
      logging.getLogger(name).setLevel(logging.ERROR)
114

115
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
Shining Sun's avatar
Shining Sun committed
116
117
118
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
Hongkun Yu's avatar
Hongkun Yu committed
119
        coordinator_name="coordinator")
120

121
    logging.info("Issuing reset command to TPU to ensure a clean state.")
Shining Sun's avatar
Shining Sun committed
122
    tf.Session.reset(tpu_cluster_resolver.get_master())
123

Shining Sun's avatar
Shining Sun committed
124
125
126
127
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
Hongkun Yu's avatar
Hongkun Yu committed
128
129
130
131
132
133
        "session_master":
            tpu_cluster_resolver.get_master(),
        "eval_session_master":
            tpu_cluster_resolver.get_master(),
        "coordinator":
            tpu_cluster_resolver.cluster_spec().as_dict()["coordinator"]
Shining Sun's avatar
Shining Sun committed
134
    }
Haoyu Zhang's avatar
Haoyu Zhang committed
135
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)
136

137
    distribution = tf.distribute.TPUStrategy(
Shining Sun's avatar
Shining Sun committed
138
        tpu_cluster_resolver, steps_per_run=100)
139

Shining Sun's avatar
Shining Sun committed
140
  else:
141
    distribution = distribute_utils.get_distribution_strategy(
Shining Sun's avatar
Shining Sun committed
142
        num_gpus=params["num_gpus"])
143

Shining Sun's avatar
Shining Sun committed
144
  return distribution
145

146
147
148
149

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
Hongkun Yu's avatar
Hongkun Yu committed
150
151
152
153
154
155
156
157
158
159
  flags_core.define_base(
      model_dir=True,
      clean=True,
      train_epochs=True,
      epochs_between_evals=True,
      export_dir=False,
      run_eagerly=True,
      stop_threshold=True,
      num_gpu=True,
      distribution_strategy=True)
160
  flags_core.define_performance(
161
      synthetic_data=True,
Nimit Nigania's avatar
Nimit Nigania committed
162
      dtype=True,
163
      fp16_implementation=True,
Nimit Nigania's avatar
Nimit Nigania committed
164
      loss_scale=True,
165
      enable_xla=True,
166
  )
167
  flags_core.define_device(tpu=True)
168
169
170
171
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

172
173
  movielens.define_flags()

174
175
176
  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
177
      dataset=movielens.ML_1M,
178
      train_epochs=2,
179
      batch_size=99000,
Hongkun Yu's avatar
Hongkun Yu committed
180
      tpu=None)
181
182

  # Add ncf-specific flags
183
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
      name="download_if_missing",
      default=True,
      help=flags_core.help_wrap(
187
188
          "Download data to data_dir if it is not already present."))

189
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
190
191
192
      name="eval_batch_size",
      default=None,
      help=flags_core.help_wrap(
193
194
195
196
197
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

198
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
199
200
      name="num_factors",
      default=8,
201
202
203
204
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
Hongkun Yu's avatar
Hongkun Yu committed
205
206
      name="layers",
      default=["64", "32", "16", "8"],
207
208
209
210
211
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
212
213
      name="mf_regularization",
      default=0.,
214
215
216
217
218
219
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
Hongkun Yu's avatar
Hongkun Yu committed
220
221
      name="mlp_regularization",
      default=["0.", "0.", "0.", "0."],
222
223
224
225
226
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
227
228
      name="num_neg",
      default=4,
229
230
231
232
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
233
234
      name="learning_rate",
      default=0.001,
235
236
      help=flags_core.help_wrap("The learning rate."))

237
  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
238
239
      name="beta1",
      default=0.9,
240
241
242
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
243
244
      name="beta2",
      default=0.999,
245
246
247
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
248
249
      name="epsilon",
      default=1e-8,
250
251
252
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

253
  flags.DEFINE_float(
Hongkun Yu's avatar
Hongkun Yu committed
254
255
      name="hr_threshold",
      default=1.0,
256
257
258
259
260
261
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
262

263
  flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
264
265
266
267
      name="constructor_type",
      default="bisection",
      enum_values=["bisection", "materialized"],
      case_sensitive=False,
268
269
270
271
272
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
  flags.DEFINE_string(
      name="train_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to training data."))

  flags.DEFINE_string(
      name="eval_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to evaluation data."))

  flags.DEFINE_string(
      name="input_meta_data_path",
      default=None,
      help=flags_core.help_wrap("Path to input meta data file."))

288
  flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
289
290
      name="ml_perf",
      default=False,
291
292
293
294
295
296
297
298
299
300
301
302
303
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
304
  flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
305
306
      name="output_ml_perf_compliance_logging",
      default=False,
Reed's avatar
Reed committed
307
308
309
310
311
312
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
Hongkun Yu's avatar
Hongkun Yu committed
313
          "caches, which is required for MLPerf compliance."))
Reed's avatar
Reed committed
314

315
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
316
317
318
      name="seed",
      default=None,
      help=flags_core.help_wrap(
319
320
          "This value will be used to seed both NumPy and TensorFlow."))

Hongkun Yu's avatar
Hongkun Yu committed
321
322
323
324
  @flags.validator(
      "eval_batch_size",
      "eval_batch_size must be at least {}".format(rconst.NUM_EVAL_NEGATIVES +
                                                   1))
325
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
326
327
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
328

329
330
331
332
  flags.DEFINE_bool(
      name="early_stopping",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
333
          "If True, we stop the training when it reaches hr_threshold"))
334

335
336
337
338
  flags.DEFINE_bool(
      name="keras_use_ctl",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
339
          "If True, we use a custom training loop for keras."))
340

Haoyu Zhang's avatar
Haoyu Zhang committed
341

Shining Sun's avatar
Shining Sun committed
342
def convert_to_softmax_logits(logits):
343
  """Convert the logits returned by the base model to softmax logits.
Shining Sun's avatar
Shining Sun committed
344

345
346
347
348
349
350
  Args:
    logits: used to create softmax.

  Returns:
    Softmax with the first column of zeros is equivalent to sigmoid.
  """
Shining Sun's avatar
Shining Sun committed
351
352
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits