ncf_common.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common functionalities used by both Keras and Estimator implementations.
16
"""
17

18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
23
import json
import logging
24
25
import os

26
# pylint: disable=g-bad-import-order
27
import numpy as np
28
from absl import flags
29
import tensorflow as tf
30
# pylint: enable=g-bad-import-order
31

32
from official.datasets import movielens
33
from official.recommendation import constants as rconst
34
from official.recommendation import data_pipeline
35
from official.recommendation import data_preprocessing
36
from official.utils.flags import core as flags_core
37
from official.utils.misc import distribution_utils
38
39


Reed's avatar
Reed committed
40
41
42
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
43
44
45
46
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
47

Shining Sun's avatar
Shining Sun committed
48
49
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
50

Shining Sun's avatar
Shining Sun committed
51
52
53
54
55
56
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
57
  else:
Shining Sun's avatar
Shining Sun committed
58
59
60
61
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
62

Shining Sun's avatar
Shining Sun committed
63
64
65
66
67
68
    num_train_steps = (producer.train_batches_per_epoch //
                       params["batches_per_step"])
    num_eval_steps = (producer.eval_batches_per_epoch //
                      params["batches_per_step"])
    assert not producer.train_batches_per_epoch % params["batches_per_step"]
    assert not producer.eval_batches_per_epoch % params["batches_per_step"]
69

Shining Sun's avatar
Shining Sun committed
70
  return num_users, num_items, num_train_steps, num_eval_steps, producer
71
72
73


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
74
  """Convenience function to turn flags into params."""
75
76
77
  num_gpus = flags_core.get_num_gpus(flags_obj)
  num_devices = FLAGS.num_tpu_shards if FLAGS.tpu else num_gpus or 1

Taylor Robie's avatar
Taylor Robie committed
78
  batch_size = (flags_obj.batch_size + num_devices - 1) // num_devices
79
80

  eval_divisor = (rconst.NUM_EVAL_NEGATIVES + 1) * num_devices
Taylor Robie's avatar
Taylor Robie committed
81
82
83
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
  eval_batch_size = ((eval_batch_size + eval_divisor - 1) //
                     eval_divisor * eval_divisor // num_devices)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

  return {
      "train_epochs": flags_obj.train_epochs,
      "batches_per_step": num_devices,
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
      "use_xla_for_gpu": flags_obj.use_xla_for_gpu,
      "epochs_between_evals": FLAGS.epochs_between_evals,
Shining Sun's avatar
Shining Sun committed
108
      "turn_off_distribution_strategy": FLAGS.turn_off_distribution_strategy,
109
  }
110
111


Shining Sun's avatar
Shining Sun committed
112
113
114
115
116
117
118
119
def get_optimizer(params):
  optimizer = tf.train.AdamOptimizer(
      learning_rate=params["learning_rate"],
      beta1=params["beta1"],
      beta2=params["beta2"],
      epsilon=params["epsilon"])
  if params["use_tpu"]:
    optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
120

Shining Sun's avatar
Shining Sun committed
121
  return optimizer
122
123


Shining Sun's avatar
Shining Sun committed
124
125
126
127
def get_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["turn_off_distribution_strategy"]:
    return None
128

Shining Sun's avatar
Shining Sun committed
129
130
131
132
133
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)
134

Shining Sun's avatar
Shining Sun committed
135
136
137
138
139
140
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )
141

Shining Sun's avatar
Shining Sun committed
142
143
    tf.logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())
144

Shining Sun's avatar
Shining Sun committed
145
146
147
148
149
150
151
152
153
154
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
    os.environ['TF_CONFIG'] = json.dumps(tf_config_env)
155

Shining Sun's avatar
Shining Sun committed
156
157
    distribution = tf.contrib.distribute.TPUStrategy(
        tpu_cluster_resolver, steps_per_run=100)
158

Shining Sun's avatar
Shining Sun committed
159
160
161
  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])
162

Shining Sun's avatar
Shining Sun committed
163
  return distribution
164

165
166
167
168
169
170
171
172
173

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
174
      synthetic_data=True,
175
      max_train_steps=False,
176
177
      dtype=False,
      all_reduce_alg=False
178
  )
179
  flags_core.define_device(tpu=True)
180
181
182
183
184
185
186
187
188
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
189
190
191
      hooks="ProfilerHook",
      tpu=None
  )
192
193
194
195
196
197
198
199

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

200
201
202
203
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

204
  flags.DEFINE_integer(
205
206
207
208
209
210
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

244
245
246
247
248
249
250
251
252
253
254
255
256
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

257
258
259
260
261
262
263
264
  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
265

266
267
268
269
270
271
272
273
  flags.DEFINE_enum(
      name="constructor_type", default="bisection",
      enum_values=["bisection", "materialized"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

274
  flags.DEFINE_bool(
275
      name="ml_perf", default=False,
276
277
278
279
280
281
282
283
284
285
286
287
288
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
289
290
291
292
293
294
295
296
297
298
299
300
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

301
302
303
304
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

Shining Sun's avatar
Shining Sun committed
305
306
307
308
309
310
  flags.DEFINE_boolean(
      name="turn_off_distribution_strategy",
      default=False,
      help=flags_core.help_wrap(
          "If set, do not use any distribution strategy."))

311
312
313
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
314
315
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
316

Reed's avatar
Reed committed
317
318
319
320
321
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

322
323
324
325
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
326

327

Shining Sun's avatar
Shining Sun committed
328
329
330
331
332
333
334
def convert_to_softmax_logits(logits):
  '''Convert the logits returned by the base model to softmax logits.

  Softmax with the first column of zeros is equivalent to sigmoid.
  '''
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits