ncf_common.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common functionalities used by both Keras and Estimator implementations.
16
"""
17

18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
import json
23
24
import os

25
# pylint: disable=g-bad-import-order
26
import numpy as np
27
from absl import flags
28
from absl import logging
29
import tensorflow as tf
30
# pylint: enable=g-bad-import-order
31

32
from official.datasets import movielens
33
from official.recommendation import constants as rconst
34
from official.recommendation import data_pipeline
35
from official.recommendation import data_preprocessing
36
from official.utils.flags import core as flags_core
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39
40


Reed's avatar
Reed committed
41
42
43
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
44
45
46
47
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
48

Shining Sun's avatar
Shining Sun committed
49
50
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
51

Shining Sun's avatar
Shining Sun committed
52
53
54
55
56
57
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
58
  else:
Shining Sun's avatar
Shining Sun committed
59
60
61
62
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
63

Shining Sun's avatar
Shining Sun committed
64
65
66
67
68
69
    num_train_steps = (producer.train_batches_per_epoch //
                       params["batches_per_step"])
    num_eval_steps = (producer.eval_batches_per_epoch //
                      params["batches_per_step"])
    assert not producer.train_batches_per_epoch % params["batches_per_step"]
    assert not producer.eval_batches_per_epoch % params["batches_per_step"]
70

Shining Sun's avatar
Shining Sun committed
71
  return num_users, num_items, num_train_steps, num_eval_steps, producer
72
73
74


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
75
  """Convenience function to turn flags into params."""
76
77
78
  num_gpus = flags_core.get_num_gpus(flags_obj)
  num_devices = FLAGS.num_tpu_shards if FLAGS.tpu else num_gpus or 1

Taylor Robie's avatar
Taylor Robie committed
79
  batch_size = (flags_obj.batch_size + num_devices - 1) // num_devices
80
81

  eval_divisor = (rconst.NUM_EVAL_NEGATIVES + 1) * num_devices
Taylor Robie's avatar
Taylor Robie committed
82
83
84
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
  eval_batch_size = ((eval_batch_size + eval_divisor - 1) //
                     eval_divisor * eval_divisor // num_devices)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

  return {
      "train_epochs": flags_obj.train_epochs,
      "batches_per_step": num_devices,
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
      "use_xla_for_gpu": flags_obj.use_xla_for_gpu,
      "epochs_between_evals": FLAGS.epochs_between_evals,
109
      "keras_use_ctl": flags_obj.keras_use_ctl,
110
      "hr_threshold": flags_obj.hr_threshold,
111
      "stream_files": flags_obj.tpu is not None,
112
113
114
      "train_dataset_path": flags_obj.train_dataset_path,
      "eval_dataset_path": flags_obj.eval_dataset_path,
      "input_meta_data_path": flags_obj.input_meta_data_path,
115
  }
116
117


Shining Sun's avatar
Shining Sun committed
118
119
120
121
122
123
124
def get_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)
125

126
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
Shining Sun's avatar
Shining Sun committed
127
128
129
130
131
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )
132

133
    logging.info("Issuing reset command to TPU to ensure a clean state.")
Shining Sun's avatar
Shining Sun committed
134
    tf.Session.reset(tpu_cluster_resolver.get_master())
135

Shining Sun's avatar
Shining Sun committed
136
137
138
139
140
141
142
143
144
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
Haoyu Zhang's avatar
Haoyu Zhang committed
145
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)
146

147
    distribution = tf.distribute.experimental.TPUStrategy(
Shining Sun's avatar
Shining Sun committed
148
        tpu_cluster_resolver, steps_per_run=100)
149

Shining Sun's avatar
Shining Sun committed
150
151
152
  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])
153

Shining Sun's avatar
Shining Sun committed
154
  return distribution
155

156
157
158
159

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
160
  flags_core.define_base(export_dir=False, run_eagerly=True)
161
162
163
164
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
165
      synthetic_data=True,
166
      max_train_steps=False,
167
      dtype=False,
168
      all_reduce_alg=False,
169
170
      enable_xla=True,
      force_v2_in_keras_compile=True
171
  )
172
  flags_core.define_device(tpu=True)
173
174
175
176
177
178
179
180
181
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
182
183
184
      hooks="ProfilerHook",
      tpu=None
  )
185
186
187
188
189
190
191
192

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

193
194
195
196
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

197
  flags.DEFINE_integer(
198
199
200
201
202
203
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

237
238
239
240
241
242
243
244
245
246
247
248
249
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

250
  flags.DEFINE_float(
251
      name="hr_threshold", default=1.0,
252
253
254
255
256
257
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
258

259
260
261
262
263
264
265
266
  flags.DEFINE_enum(
      name="constructor_type", default="bisection",
      enum_values=["bisection", "materialized"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  flags.DEFINE_string(
      name="train_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to training data."))

  flags.DEFINE_string(
      name="eval_dataset_path",
      default=None,
      help=flags_core.help_wrap("Path to evaluation data."))

  flags.DEFINE_string(
      name="input_meta_data_path",
      default=None,
      help=flags_core.help_wrap("Path to input meta data file."))

282
  flags.DEFINE_bool(
283
      name="ml_perf", default=False,
284
285
286
287
288
289
290
291
292
293
294
295
296
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
297
298
299
300
301
302
303
304
305
306
307
308
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

309
310
311
312
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

313
314
315
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
316
317
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
318

Reed's avatar
Reed committed
319
320
321
322
323
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

324
325
326
327
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
328

329
330
331
332
  flags.DEFINE_bool(
      name="early_stopping",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
333
          "If True, we stop the training when it reaches hr_threshold"))
334

335
336
337
338
  flags.DEFINE_bool(
      name="keras_use_ctl",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
339
          "If True, we use a custom training loop for keras."))
340

Haoyu Zhang's avatar
Haoyu Zhang committed
341

Shining Sun's avatar
Shining Sun committed
342
def convert_to_softmax_logits(logits):
343
  """Convert the logits returned by the base model to softmax logits.
Shining Sun's avatar
Shining Sun committed
344

345
346
347
348
349
350
  Args:
    logits: used to create softmax.

  Returns:
    Softmax with the first column of zeros is equivalent to sigmoid.
  """
Shining Sun's avatar
Shining Sun committed
351
352
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits