ncf_common.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common functionalities used by both Keras and Estimator implementations.
16
"""
17

18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
import json
23
24
import os

25
# pylint: disable=g-bad-import-order
26
import numpy as np
27
from absl import flags
28
from absl import logging
29
import tensorflow as tf
30
# pylint: enable=g-bad-import-order
31

32
from official.datasets import movielens
33
from official.recommendation import constants as rconst
34
from official.recommendation import data_pipeline
35
from official.recommendation import data_preprocessing
36
from official.utils.flags import core as flags_core
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39
40


Reed's avatar
Reed committed
41
42
43
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
44
45
46
47
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
48

Shining Sun's avatar
Shining Sun committed
49
50
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
51

Shining Sun's avatar
Shining Sun committed
52
53
54
55
56
57
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
58
  else:
Shining Sun's avatar
Shining Sun committed
59
60
61
62
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
63

Shining Sun's avatar
Shining Sun committed
64
65
66
67
68
69
    num_train_steps = (producer.train_batches_per_epoch //
                       params["batches_per_step"])
    num_eval_steps = (producer.eval_batches_per_epoch //
                      params["batches_per_step"])
    assert not producer.train_batches_per_epoch % params["batches_per_step"]
    assert not producer.eval_batches_per_epoch % params["batches_per_step"]
70

Shining Sun's avatar
Shining Sun committed
71
  return num_users, num_items, num_train_steps, num_eval_steps, producer
72
73
74


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
75
  """Convenience function to turn flags into params."""
76
77
78
  num_gpus = flags_core.get_num_gpus(flags_obj)
  num_devices = FLAGS.num_tpu_shards if FLAGS.tpu else num_gpus or 1

Taylor Robie's avatar
Taylor Robie committed
79
  batch_size = (flags_obj.batch_size + num_devices - 1) // num_devices
80
81

  eval_divisor = (rconst.NUM_EVAL_NEGATIVES + 1) * num_devices
Taylor Robie's avatar
Taylor Robie committed
82
83
84
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
  eval_batch_size = ((eval_batch_size + eval_divisor - 1) //
                     eval_divisor * eval_divisor // num_devices)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

  return {
      "train_epochs": flags_obj.train_epochs,
      "batches_per_step": num_devices,
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
      "use_xla_for_gpu": flags_obj.use_xla_for_gpu,
      "epochs_between_evals": FLAGS.epochs_between_evals,
109
      "keras_use_ctl": flags_obj.keras_use_ctl,
110
      "hr_threshold": flags_obj.hr_threshold,
111
  }
112
113


Shining Sun's avatar
Shining Sun committed
114
115
116
117
118
119
120
def get_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)
121

122
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
Shining Sun's avatar
Shining Sun committed
123
124
125
126
127
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )
128

129
    logging.info("Issuing reset command to TPU to ensure a clean state.")
Shining Sun's avatar
Shining Sun committed
130
    tf.Session.reset(tpu_cluster_resolver.get_master())
131

Shining Sun's avatar
Shining Sun committed
132
133
134
135
136
137
138
139
140
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
Haoyu Zhang's avatar
Haoyu Zhang committed
141
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)
142

143
    distribution = tf.distribute.experimental.TPUStrategy(
Shining Sun's avatar
Shining Sun committed
144
        tpu_cluster_resolver, steps_per_run=100)
145

Shining Sun's avatar
Shining Sun committed
146
147
148
  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])
149

Shining Sun's avatar
Shining Sun committed
150
  return distribution
151

152
153
154
155

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
156
  flags_core.define_base(export_dir=False, run_eagerly=True)
157
158
159
160
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
161
      synthetic_data=True,
162
      max_train_steps=False,
163
      dtype=False,
164
165
      all_reduce_alg=False,
      enable_xla=True
166
  )
167
  flags_core.define_device(tpu=True)
168
169
170
171
172
173
174
175
176
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
177
178
179
      hooks="ProfilerHook",
      tpu=None
  )
180
181
182
183
184
185
186
187

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

188
189
190
191
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

192
  flags.DEFINE_integer(
193
194
195
196
197
198
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

232
233
234
235
236
237
238
239
240
241
242
243
244
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

245
  flags.DEFINE_float(
246
      name="hr_threshold", default=1.0,
247
248
249
250
251
252
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
253

254
255
256
257
258
259
260
261
  flags.DEFINE_enum(
      name="constructor_type", default="bisection",
      enum_values=["bisection", "materialized"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

262
  flags.DEFINE_bool(
263
      name="ml_perf", default=False,
264
265
266
267
268
269
270
271
272
273
274
275
276
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
277
278
279
280
281
282
283
284
285
286
287
288
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

289
290
291
292
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

293
294
295
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
296
297
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
298

Reed's avatar
Reed committed
299
300
301
302
303
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

304
305
306
307
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
308

309
310
311
312
  flags.DEFINE_bool(
      name="early_stopping",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
313
          "If True, we stop the training when it reaches hr_threshold"))
314

315
316
317
318
  flags.DEFINE_bool(
      name="keras_use_ctl",
      default=False,
      help=flags_core.help_wrap(
Haoyu Zhang's avatar
Haoyu Zhang committed
319
          "If True, we use a custom training loop for keras."))
320

Haoyu Zhang's avatar
Haoyu Zhang committed
321

Shining Sun's avatar
Shining Sun committed
322
def convert_to_softmax_logits(logits):
323
  """Convert the logits returned by the base model to softmax logits.
Shining Sun's avatar
Shining Sun committed
324

325
326
327
328
329
330
  Args:
    logits: used to create softmax.

  Returns:
    Softmax with the first column of zeros is equivalent to sigmoid.
  """
Shining Sun's avatar
Shining Sun committed
331
332
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits