create_finetuning_data.py 16.4 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
"""BERT finetuning task dataset generator."""

17
import functools
18
import json
19
import os
20

Hongkun Yu's avatar
Hongkun Yu committed
21
# Import libraries
22
23
24
from absl import app
from absl import flags
import tensorflow as tf
25
26
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from official.nlp.data import sentence_retrieval_lib
28
# word-piece tokenizer based squad_lib
29
from official.nlp.data import squad_lib as squad_lib_wp
30
# sentence-piece tokenizer based squad_lib
31
from official.nlp.data import squad_lib_sp
32
from official.nlp.data import tagging_data_lib
33
34
35

FLAGS = flags.FLAGS

36
# TODO(chendouble): consider moving each task to its own binary.
37
flags.DEFINE_enum(
Maxim Neumann's avatar
Maxim Neumann committed
38
    "fine_tuning_task_type", "classification",
39
    ["classification", "regression", "squad", "retrieval", "tagging"],
40
    "The name of the BERT fine tuning task for which data "
41
    "will be generated.")
42

43
# BERT classification specific flags.
44
45
46
47
48
flags.DEFINE_string(
    "input_data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

49
50
51
flags.DEFINE_enum(
    "classification_task_name", "MNLI", [
        "AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE",
52
        "SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
        "AX-g", "SUPERGLUE-RTE", "CB", "BoolQ", "WIC"
54
55
56
57
58
    ], "The name of the task to train BERT classifier. The "
    "difference between XTREME-XNLI and XNLI is: 1. the format "
    "of input tsv files; 2. the dev set for XTREME is english "
    "only and for XNLI is all languages combined. Same for "
    "PAWS-X.")
59

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
# MNLI task-specific flag.
61
62
flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"],
                  "The type of MNLI dataset.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
64

# XNLI task-specific flag.
Tianqi Liu's avatar
Tianqi Liu committed
65
66
flags.DEFINE_string(
    "xnli_language", "en",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
    "Language of training data for XNLI task. If the value is 'all', the data "
Tianqi Liu's avatar
Tianqi Liu committed
68
69
    "of all languages will be used for training.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
# PAWS-X task-specific flag.
Tianqi Liu's avatar
Tianqi Liu committed
71
72
flags.DEFINE_string(
    "pawsx_language", "en",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
    "Language of training data for PAWS-X task. If the value is 'all', the data "
Tianqi Liu's avatar
Tianqi Liu committed
74
    "of all languages will be used for training.")
Tianqi Liu's avatar
Tianqi Liu committed
75

76
77
78
79
80
81
# XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli.
flags.DEFINE_string(
    "translated_input_data_dir", None,
    "The translated input data dir. Should contain the .tsv files (or other "
    "data files) for the task.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
# Retrieval task-specific flags.
83
84
85
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
                  "The name of sentence retrieval task for scoring")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
# Tagging task-specific flags.
87
88
89
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"],
                  "The name of BERT tagging (token classification) task.")

90
91
92
flags.DEFINE_bool("tagging_only_use_en_train", True,
                  "Whether only use english training data in tagging.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
# BERT Squad task-specific flags.
94
95
96
97
flags.DEFINE_string(
    "squad_data_file", None,
    "The input data file in for generating training data for BERT squad task.")

98
99
100
101
102
flags.DEFINE_string(
    "translated_squad_data_folder", None,
    "The translated data folder for generating training data for BERT squad "
    "task.")

103
104
105
106
107
108
109
110
111
112
flags.DEFINE_integer(
    "doc_stride", 128,
    "When splitting up a long document into chunks, how much stride to "
    "take between chunks.")

flags.DEFINE_integer(
    "max_query_length", 64,
    "The maximum number of tokens for the question. Questions longer than "
    "this will be truncated to this length.")

113
114
115
116
flags.DEFINE_bool(
    "version_2_with_negative", False,
    "If true, the SQuAD examples contain some that do not have an answer.")

117
118
119
120
121
flags.DEFINE_bool(
    "xlnet_format", False,
    "If true, then data will be preprocessed in a paragraph, query, class order"
    " instead of the BERT-style class, paragraph, query order.")

122
123
124
# XTREME specific flags.
flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.")

125
126
127
128
129
130
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "train_data_output_path", None,
131
    "The path in which generated training input data will be written as tf"
132
    " records.")
133
134
135

flags.DEFINE_string(
    "eval_data_output_path", None,
Tianqi Liu's avatar
Tianqi Liu committed
136
    "The path in which generated evaluation input data will be written as tf"
137
    " records.")
138

Tianqi Liu's avatar
Tianqi Liu committed
139
140
141
flags.DEFINE_string(
    "test_data_output_path", None,
    "The path in which generated test input data will be written as tf"
Tianqi Liu's avatar
Tianqi Liu committed
142
143
    " records. If None, do not generate test data. Must be a pattern template"
    " as test_{}.tfrecords if processor has language specific test data.")
Tianqi Liu's avatar
Tianqi Liu committed
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

159
160
161
162
flags.DEFINE_string("sp_model_file", "",
                    "The path to the model used by sentence piece tokenizer.")

flags.DEFINE_enum(
Chen Chen's avatar
Chen Chen committed
163
164
165
166
    "tokenization", "WordPiece", ["WordPiece", "SentencePiece"],
    "Specifies the tokenizer implementation, i.e., whether to use WordPiece "
    "or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, "
    "while ALBERT uses SentencePiece tokenizer.")
167

168
169
170
171
flags.DEFINE_string(
    "tfds_params", "", "Comma-separated list of TFDS parameter assigments for "
    "generic classfication data import (for more details "
    "see the TfdsProcessor class documentation).")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
172

173
174
175

def generate_classifier_dataset():
  """Generates classifier dataset and returns input meta data."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
  if FLAGS.classification_task_name in [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
      "COLA",
      "WNLI",
      "SST-2",
      "MRPC",
      "QQP",
      "STS-B",
      "MNLI",
      "QNLI",
      "RTE",
      "AX",
      "SUPERGLUE-RTE",
      "CB",
      "BoolQ",
      "WIC",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
192
193
194
195
  ]:
    assert not FLAGS.input_data_dir or FLAGS.tfds_params
  else:
    assert (FLAGS.input_data_dir and FLAGS.classification_task_name or
            FLAGS.tfds_params)
196

Chen Chen's avatar
Chen Chen committed
197
  if FLAGS.tokenization == "WordPiece":
198
199
200
201
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
Chen Chen's avatar
Chen Chen committed
202
    assert FLAGS.tokenization == "SentencePiece"
203
204
205
206
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
208
  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
209
        tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
211
212
213
214
215
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
216
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
219
        max_seq_length=FLAGS.max_seq_length)
  else:
    processors = {
Vincent Etter's avatar
Vincent Etter committed
220
221
        "ax":
            classifier_data_lib.AxProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
222
223
        "cola":
            classifier_data_lib.ColaProcessor,
224
225
        "imdb":
            classifier_data_lib.ImdbProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
226
        "mnli":
227
228
            functools.partial(
                classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type),
Tianqi Liu's avatar
Tianqi Liu committed
229
230
231
232
        "mrpc":
            classifier_data_lib.MrpcProcessor,
        "qnli":
            classifier_data_lib.QnliProcessor,
233
234
235
236
        "qqp":
            classifier_data_lib.QqpProcessor,
        "rte":
            classifier_data_lib.RteProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
237
238
        "sst-2":
            classifier_data_lib.SstProcessor,
239
240
        "sts-b":
            classifier_data_lib.StsBProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
241
        "xnli":
242
243
244
            functools.partial(
                classifier_data_lib.XnliProcessor,
                language=FLAGS.xnli_language),
Tianqi Liu's avatar
Tianqi Liu committed
245
        "paws-x":
246
247
248
249
250
            functools.partial(
                classifier_data_lib.PawsxProcessor,
                language=FLAGS.pawsx_language),
        "wnli":
            classifier_data_lib.WnliProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
251
        "xtreme-xnli":
252
253
254
255
            functools.partial(
                classifier_data_lib.XtremeXnliProcessor,
                translated_data_dir=FLAGS.translated_input_data_dir,
                only_use_en_dev=FLAGS.only_use_en_dev),
Tianqi Liu's avatar
Tianqi Liu committed
256
        "xtreme-paws-x":
257
258
259
            functools.partial(
                classifier_data_lib.XtremePawsxProcessor,
                translated_data_dir=FLAGS.translated_input_data_dir,
stephenwu's avatar
stephenwu committed
260
261
                only_use_en_dev=FLAGS.only_use_en_dev),
        "ax-g":
stephenwu's avatar
stephenwu committed
262
            classifier_data_lib.AXgProcessor,
263
        "superglue-rte":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264
265
266
267
268
            classifier_data_lib.SuperGLUERTEProcessor,
        "cb":
            classifier_data_lib.CBProcessor,
        "boolq":
            classifier_data_lib.BoolQProcessor,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
269
270
        "wic":
            classifier_data_lib.WnliProcessor,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
271
272
273
274
275
    }
    task_name = FLAGS.classification_task_name.lower()
    if task_name not in processors:
      raise ValueError("Task not found: %s" % (task_name))

Tianqi Liu's avatar
Tianqi Liu committed
276
    processor = processors[task_name](process_text_fn=processor_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
277
278
279
280
281
282
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        FLAGS.input_data_dir,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
283
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
        max_seq_length=FLAGS.max_seq_length)
285
286


Maxim Neumann's avatar
Maxim Neumann committed
287
288
def generate_regression_dataset():
  """Generates regression dataset and returns input meta data."""
Chen Chen's avatar
Chen Chen committed
289
  if FLAGS.tokenization == "WordPiece":
Maxim Neumann's avatar
Maxim Neumann committed
290
291
292
293
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
Chen Chen's avatar
Chen Chen committed
294
    assert FLAGS.tokenization == "SentencePiece"
Maxim Neumann's avatar
Maxim Neumann committed
295
296
297
298
299
300
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
301
        tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
Maxim Neumann's avatar
Maxim Neumann committed
302
303
304
305
306
307
308
309
310
311
312
313
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
        test_data_output_path=FLAGS.test_data_output_path,
        max_seq_length=FLAGS.max_seq_length)
  else:
    raise ValueError("No data processor found for the given regression task.")


314
315
316
def generate_squad_dataset():
  """Generates squad training dataset and returns input meta data."""
  assert FLAGS.squad_data_file
Chen Chen's avatar
Chen Chen committed
317
  if FLAGS.tokenization == "WordPiece":
318
    return squad_lib_wp.generate_tf_record_from_json_file(
Allen Wang's avatar
Allen Wang committed
319
320
321
        input_file_path=FLAGS.squad_data_file,
        vocab_file_path=FLAGS.vocab_file,
        output_path=FLAGS.train_data_output_path,
322
        translated_input_folder=FLAGS.translated_squad_data_folder,
Allen Wang's avatar
Allen Wang committed
323
324
325
326
327
328
        max_seq_length=FLAGS.max_seq_length,
        do_lower_case=FLAGS.do_lower_case,
        max_query_length=FLAGS.max_query_length,
        doc_stride=FLAGS.doc_stride,
        version_2_with_negative=FLAGS.version_2_with_negative,
        xlnet_format=FLAGS.xlnet_format)
329
  else:
Chen Chen's avatar
Chen Chen committed
330
    assert FLAGS.tokenization == "SentencePiece"
331
    return squad_lib_sp.generate_tf_record_from_json_file(
332
333
334
        input_file_path=FLAGS.squad_data_file,
        sp_model_file=FLAGS.sp_model_file,
        output_path=FLAGS.train_data_output_path,
335
        translated_input_folder=FLAGS.translated_squad_data_folder,
336
337
338
339
340
341
        max_seq_length=FLAGS.max_seq_length,
        do_lower_case=FLAGS.do_lower_case,
        max_query_length=FLAGS.max_query_length,
        doc_stride=FLAGS.doc_stride,
        xlnet_format=FLAGS.xlnet_format,
        version_2_with_negative=FLAGS.version_2_with_negative)
342
343


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
344
345
346
def generate_retrieval_dataset():
  """Generate retrieval test and dev dataset and returns input meta data."""
  assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
Chen Chen's avatar
Chen Chen committed
347
  if FLAGS.tokenization == "WordPiece":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
349
350
351
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
Chen Chen's avatar
Chen Chen committed
352
    assert FLAGS.tokenization == "SentencePiece"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  processors = {
      "bucc": sentence_retrieval_lib.BuccProcessor,
      "tatoeba": sentence_retrieval_lib.TatoebaProcessor,
  }

  task_name = FLAGS.retrieval_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % task_name)

  processor = processors[task_name](process_text_fn=processor_text_fn)

  return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
369
370
      processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path,
      FLAGS.test_data_output_path, FLAGS.max_seq_length)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
371
372


373
374
375
def generate_tagging_dataset():
  """Generates tagging dataset."""
  processors = {
376
377
378
379
380
381
382
383
384
385
      "panx":
          functools.partial(
              tagging_data_lib.PanxProcessor,
              only_use_en_train=FLAGS.tagging_only_use_en_train,
              only_use_en_dev=FLAGS.only_use_en_dev),
      "udpos":
          functools.partial(
              tagging_data_lib.UdposProcessor,
              only_use_en_train=FLAGS.tagging_only_use_en_train,
              only_use_en_dev=FLAGS.only_use_en_dev),
386
387
388
389
390
  }
  task_name = FLAGS.tagging_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % task_name)

Chen Chen's avatar
Chen Chen committed
391
  if FLAGS.tokenization == "WordPiece":
392
393
394
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
Chen Chen's avatar
Chen Chen committed
395
  elif FLAGS.tokenization == "SentencePiece":
396
397
398
399
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)
  else:
Chen Chen's avatar
Chen Chen committed
400
    raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization)
401
402
403
404
405
406
407
408

  processor = processors[task_name]()
  return tagging_data_lib.generate_tf_record_from_data_file(
      processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length,
      FLAGS.train_data_output_path, FLAGS.eval_data_output_path,
      FLAGS.test_data_output_path, processor_text_fn)


409
def main(_):
Chen Chen's avatar
Chen Chen committed
410
  if FLAGS.tokenization == "WordPiece":
411
412
413
414
    if not FLAGS.vocab_file:
      raise ValueError(
          "FLAG vocab_file for word-piece tokenizer is not specified.")
  else:
Chen Chen's avatar
Chen Chen committed
415
    assert FLAGS.tokenization == "SentencePiece"
416
417
418
419
    if not FLAGS.sp_model_file:
      raise ValueError(
          "FLAG sp_model_file for sentence-piece tokenizer is not specified.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
420
421
422
  if FLAGS.fine_tuning_task_type != "retrieval":
    flags.mark_flag_as_required("train_data_output_path")

423
424
  if FLAGS.fine_tuning_task_type == "classification":
    input_meta_data = generate_classifier_dataset()
Maxim Neumann's avatar
Maxim Neumann committed
425
426
  elif FLAGS.fine_tuning_task_type == "regression":
    input_meta_data = generate_regression_dataset()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
427
428
  elif FLAGS.fine_tuning_task_type == "retrieval":
    input_meta_data = generate_retrieval_dataset()
429
  elif FLAGS.fine_tuning_task_type == "squad":
430
    input_meta_data = generate_squad_dataset()
431
432
433
  else:
    assert FLAGS.fine_tuning_task_type == "tagging"
    input_meta_data = generate_tagging_dataset()
434

435
  tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
436
437
438
439
440
441
442
  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_meta_data, indent=4) + "\n")


if __name__ == "__main__":
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)