create_finetuning_data.py 16.2 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
"""BERT finetuning task dataset generator."""

17
import functools
18
import json
19
import os
20

Hongkun Yu's avatar
Hongkun Yu committed
21
# Import libraries
22
23
24
from absl import app
from absl import flags
import tensorflow as tf
25
26
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from official.nlp.data import sentence_retrieval_lib
28
# word-piece tokenizer based squad_lib
29
from official.nlp.data import squad_lib as squad_lib_wp
30
# sentence-piece tokenizer based squad_lib
31
from official.nlp.data import squad_lib_sp
32
from official.nlp.data import tagging_data_lib
33
34
35

FLAGS = flags.FLAGS

36
# TODO(chendouble): consider moving each task to its own binary.
37
flags.DEFINE_enum(
Maxim Neumann's avatar
Maxim Neumann committed
38
    "fine_tuning_task_type", "classification",
39
    ["classification", "regression", "squad", "retrieval", "tagging"],
40
    "The name of the BERT fine tuning task for which data "
41
    "will be generated.")
42

43
# BERT classification specific flags.
44
45
46
47
48
flags.DEFINE_string(
    "input_data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

49
50
51
flags.DEFINE_enum(
    "classification_task_name", "MNLI", [
        "AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE",
52
        "SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
        "AX-g", "SUPERGLUE-RTE", "CB", "BoolQ"
54
55
56
57
58
    ], "The name of the task to train BERT classifier. The "
    "difference between XTREME-XNLI and XNLI is: 1. the format "
    "of input tsv files; 2. the dev set for XTREME is english "
    "only and for XNLI is all languages combined. Same for "
    "PAWS-X.")
59

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
# MNLI task-specific flag.
61
62
flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"],
                  "The type of MNLI dataset.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
64

# XNLI task-specific flag.
Tianqi Liu's avatar
Tianqi Liu committed
65
66
flags.DEFINE_string(
    "xnli_language", "en",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
    "Language of training data for XNLI task. If the value is 'all', the data "
Tianqi Liu's avatar
Tianqi Liu committed
68
69
    "of all languages will be used for training.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
# PAWS-X task-specific flag.
Tianqi Liu's avatar
Tianqi Liu committed
71
72
flags.DEFINE_string(
    "pawsx_language", "en",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
    "Language of training data for PAWS-X task. If the value is 'all', the data "
Tianqi Liu's avatar
Tianqi Liu committed
74
    "of all languages will be used for training.")
Tianqi Liu's avatar
Tianqi Liu committed
75

76
77
78
79
80
81
# XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli.
flags.DEFINE_string(
    "translated_input_data_dir", None,
    "The translated input data dir. Should contain the .tsv files (or other "
    "data files) for the task.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
# Retrieval task-specific flags.
83
84
85
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
                  "The name of sentence retrieval task for scoring")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
# Tagging task-specific flags.
87
88
89
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"],
                  "The name of BERT tagging (token classification) task.")

90
91
92
flags.DEFINE_bool("tagging_only_use_en_train", True,
                  "Whether only use english training data in tagging.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
# BERT Squad task-specific flags.
94
95
96
97
flags.DEFINE_string(
    "squad_data_file", None,
    "The input data file in for generating training data for BERT squad task.")

98
99
100
101
102
flags.DEFINE_string(
    "translated_squad_data_folder", None,
    "The translated data folder for generating training data for BERT squad "
    "task.")

103
104
105
106
107
108
109
110
111
112
flags.DEFINE_integer(
    "doc_stride", 128,
    "When splitting up a long document into chunks, how much stride to "
    "take between chunks.")

flags.DEFINE_integer(
    "max_query_length", 64,
    "The maximum number of tokens for the question. Questions longer than "
    "this will be truncated to this length.")

113
114
115
116
flags.DEFINE_bool(
    "version_2_with_negative", False,
    "If true, the SQuAD examples contain some that do not have an answer.")

117
118
119
120
121
flags.DEFINE_bool(
    "xlnet_format", False,
    "If true, then data will be preprocessed in a paragraph, query, class order"
    " instead of the BERT-style class, paragraph, query order.")

122
123
124
# XTREME specific flags.
flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.")

125
126
127
128
129
130
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "train_data_output_path", None,
131
    "The path in which generated training input data will be written as tf"
132
    " records.")
133
134
135

flags.DEFINE_string(
    "eval_data_output_path", None,
Tianqi Liu's avatar
Tianqi Liu committed
136
    "The path in which generated evaluation input data will be written as tf"
137
    " records.")
138

Tianqi Liu's avatar
Tianqi Liu committed
139
140
141
flags.DEFINE_string(
    "test_data_output_path", None,
    "The path in which generated test input data will be written as tf"
Tianqi Liu's avatar
Tianqi Liu committed
142
143
    " records. If None, do not generate test data. Must be a pattern template"
    " as test_{}.tfrecords if processor has language specific test data.")
Tianqi Liu's avatar
Tianqi Liu committed
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

159
160
161
162
flags.DEFINE_string("sp_model_file", "",
                    "The path to the model used by sentence piece tokenizer.")

flags.DEFINE_enum(
Chen Chen's avatar
Chen Chen committed
163
164
165
166
    "tokenization", "WordPiece", ["WordPiece", "SentencePiece"],
    "Specifies the tokenizer implementation, i.e., whether to use WordPiece "
    "or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, "
    "while ALBERT uses SentencePiece tokenizer.")
167

168
169
170
171
flags.DEFINE_string(
    "tfds_params", "", "Comma-separated list of TFDS parameter assigments for "
    "generic classfication data import (for more details "
    "see the TfdsProcessor class documentation).")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
172

173
174
175

def generate_classifier_dataset():
  """Generates classifier dataset and returns input meta data."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
177
  if FLAGS.classification_task_name in [
      "COLA", "WNLI", "SST-2", "MRPC", "QQP", "STS-B", "MNLI", "QNLI", "RTE",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
178
      "AX", "SUPERGLUE-RTE", "CB", "BoolQ"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
179
180
181
182
183
  ]:
    assert not FLAGS.input_data_dir or FLAGS.tfds_params
  else:
    assert (FLAGS.input_data_dir and FLAGS.classification_task_name or
            FLAGS.tfds_params)
184

Chen Chen's avatar
Chen Chen committed
185
  if FLAGS.tokenization == "WordPiece":
186
187
188
189
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
Chen Chen's avatar
Chen Chen committed
190
    assert FLAGS.tokenization == "SentencePiece"
191
192
193
194
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
195
196
  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
197
        tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
199
200
201
202
203
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
204
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205
206
207
        max_seq_length=FLAGS.max_seq_length)
  else:
    processors = {
Vincent Etter's avatar
Vincent Etter committed
208
209
        "ax":
            classifier_data_lib.AxProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
210
211
        "cola":
            classifier_data_lib.ColaProcessor,
212
213
        "imdb":
            classifier_data_lib.ImdbProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
214
        "mnli":
215
216
            functools.partial(
                classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type),
Tianqi Liu's avatar
Tianqi Liu committed
217
218
219
220
        "mrpc":
            classifier_data_lib.MrpcProcessor,
        "qnli":
            classifier_data_lib.QnliProcessor,
221
222
223
224
        "qqp":
            classifier_data_lib.QqpProcessor,
        "rte":
            classifier_data_lib.RteProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
225
226
        "sst-2":
            classifier_data_lib.SstProcessor,
227
228
        "sts-b":
            classifier_data_lib.StsBProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
229
        "xnli":
230
231
232
            functools.partial(
                classifier_data_lib.XnliProcessor,
                language=FLAGS.xnli_language),
Tianqi Liu's avatar
Tianqi Liu committed
233
        "paws-x":
234
235
236
237
238
            functools.partial(
                classifier_data_lib.PawsxProcessor,
                language=FLAGS.pawsx_language),
        "wnli":
            classifier_data_lib.WnliProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
239
        "xtreme-xnli":
240
241
242
243
            functools.partial(
                classifier_data_lib.XtremeXnliProcessor,
                translated_data_dir=FLAGS.translated_input_data_dir,
                only_use_en_dev=FLAGS.only_use_en_dev),
Tianqi Liu's avatar
Tianqi Liu committed
244
        "xtreme-paws-x":
245
246
247
            functools.partial(
                classifier_data_lib.XtremePawsxProcessor,
                translated_data_dir=FLAGS.translated_input_data_dir,
stephenwu's avatar
stephenwu committed
248
249
                only_use_en_dev=FLAGS.only_use_en_dev),
        "ax-g":
stephenwu's avatar
stephenwu committed
250
            classifier_data_lib.AXgProcessor,
251
        "superglue-rte":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
252
253
254
255
256
            classifier_data_lib.SuperGLUERTEProcessor,
        "cb":
            classifier_data_lib.CBProcessor,
        "boolq":
            classifier_data_lib.BoolQProcessor,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
257
258
259
260
261
    }
    task_name = FLAGS.classification_task_name.lower()
    if task_name not in processors:
      raise ValueError("Task not found: %s" % (task_name))

Tianqi Liu's avatar
Tianqi Liu committed
262
    processor = processors[task_name](process_text_fn=processor_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
264
265
266
267
268
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        FLAGS.input_data_dir,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
269
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
270
        max_seq_length=FLAGS.max_seq_length)
271
272


Maxim Neumann's avatar
Maxim Neumann committed
273
274
def generate_regression_dataset():
  """Generates regression dataset and returns input meta data."""
Chen Chen's avatar
Chen Chen committed
275
  if FLAGS.tokenization == "WordPiece":
Maxim Neumann's avatar
Maxim Neumann committed
276
277
278
279
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
Chen Chen's avatar
Chen Chen committed
280
    assert FLAGS.tokenization == "SentencePiece"
Maxim Neumann's avatar
Maxim Neumann committed
281
282
283
284
285
286
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
287
        tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
Maxim Neumann's avatar
Maxim Neumann committed
288
289
290
291
292
293
294
295
296
297
298
299
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
        test_data_output_path=FLAGS.test_data_output_path,
        max_seq_length=FLAGS.max_seq_length)
  else:
    raise ValueError("No data processor found for the given regression task.")


300
301
302
def generate_squad_dataset():
  """Generates squad training dataset and returns input meta data."""
  assert FLAGS.squad_data_file
Chen Chen's avatar
Chen Chen committed
303
  if FLAGS.tokenization == "WordPiece":
304
    return squad_lib_wp.generate_tf_record_from_json_file(
Allen Wang's avatar
Allen Wang committed
305
306
307
        input_file_path=FLAGS.squad_data_file,
        vocab_file_path=FLAGS.vocab_file,
        output_path=FLAGS.train_data_output_path,
308
        translated_input_folder=FLAGS.translated_squad_data_folder,
Allen Wang's avatar
Allen Wang committed
309
310
311
312
313
314
        max_seq_length=FLAGS.max_seq_length,
        do_lower_case=FLAGS.do_lower_case,
        max_query_length=FLAGS.max_query_length,
        doc_stride=FLAGS.doc_stride,
        version_2_with_negative=FLAGS.version_2_with_negative,
        xlnet_format=FLAGS.xlnet_format)
315
  else:
Chen Chen's avatar
Chen Chen committed
316
    assert FLAGS.tokenization == "SentencePiece"
317
    return squad_lib_sp.generate_tf_record_from_json_file(
318
319
320
        input_file_path=FLAGS.squad_data_file,
        sp_model_file=FLAGS.sp_model_file,
        output_path=FLAGS.train_data_output_path,
321
        translated_input_folder=FLAGS.translated_squad_data_folder,
322
323
324
325
326
327
        max_seq_length=FLAGS.max_seq_length,
        do_lower_case=FLAGS.do_lower_case,
        max_query_length=FLAGS.max_query_length,
        doc_stride=FLAGS.doc_stride,
        xlnet_format=FLAGS.xlnet_format,
        version_2_with_negative=FLAGS.version_2_with_negative)
328
329


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
330
331
332
def generate_retrieval_dataset():
  """Generate retrieval test and dev dataset and returns input meta data."""
  assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
Chen Chen's avatar
Chen Chen committed
333
  if FLAGS.tokenization == "WordPiece":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
334
335
336
337
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
Chen Chen's avatar
Chen Chen committed
338
    assert FLAGS.tokenization == "SentencePiece"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  processors = {
      "bucc": sentence_retrieval_lib.BuccProcessor,
      "tatoeba": sentence_retrieval_lib.TatoebaProcessor,
  }

  task_name = FLAGS.retrieval_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % task_name)

  processor = processors[task_name](process_text_fn=processor_text_fn)

  return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
355
356
      processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path,
      FLAGS.test_data_output_path, FLAGS.max_seq_length)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
357
358


359
360
361
def generate_tagging_dataset():
  """Generates tagging dataset."""
  processors = {
362
363
364
365
366
367
368
369
370
371
      "panx":
          functools.partial(
              tagging_data_lib.PanxProcessor,
              only_use_en_train=FLAGS.tagging_only_use_en_train,
              only_use_en_dev=FLAGS.only_use_en_dev),
      "udpos":
          functools.partial(
              tagging_data_lib.UdposProcessor,
              only_use_en_train=FLAGS.tagging_only_use_en_train,
              only_use_en_dev=FLAGS.only_use_en_dev),
372
373
374
375
376
  }
  task_name = FLAGS.tagging_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % task_name)

Chen Chen's avatar
Chen Chen committed
377
  if FLAGS.tokenization == "WordPiece":
378
379
380
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
Chen Chen's avatar
Chen Chen committed
381
  elif FLAGS.tokenization == "SentencePiece":
382
383
384
385
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)
  else:
Chen Chen's avatar
Chen Chen committed
386
    raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization)
387
388
389
390
391
392
393
394

  processor = processors[task_name]()
  return tagging_data_lib.generate_tf_record_from_data_file(
      processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length,
      FLAGS.train_data_output_path, FLAGS.eval_data_output_path,
      FLAGS.test_data_output_path, processor_text_fn)


395
def main(_):
Chen Chen's avatar
Chen Chen committed
396
  if FLAGS.tokenization == "WordPiece":
397
398
399
400
    if not FLAGS.vocab_file:
      raise ValueError(
          "FLAG vocab_file for word-piece tokenizer is not specified.")
  else:
Chen Chen's avatar
Chen Chen committed
401
    assert FLAGS.tokenization == "SentencePiece"
402
403
404
405
    if not FLAGS.sp_model_file:
      raise ValueError(
          "FLAG sp_model_file for sentence-piece tokenizer is not specified.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
406
407
408
  if FLAGS.fine_tuning_task_type != "retrieval":
    flags.mark_flag_as_required("train_data_output_path")

409
410
  if FLAGS.fine_tuning_task_type == "classification":
    input_meta_data = generate_classifier_dataset()
Maxim Neumann's avatar
Maxim Neumann committed
411
412
  elif FLAGS.fine_tuning_task_type == "regression":
    input_meta_data = generate_regression_dataset()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
413
414
  elif FLAGS.fine_tuning_task_type == "retrieval":
    input_meta_data = generate_retrieval_dataset()
415
  elif FLAGS.fine_tuning_task_type == "squad":
416
    input_meta_data = generate_squad_dataset()
417
418
419
  else:
    assert FLAGS.fine_tuning_task_type == "tagging"
    input_meta_data = generate_tagging_dataset()
420

421
  tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
422
423
424
425
426
427
428
  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_meta_data, indent=4) + "\n")


if __name__ == "__main__":
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)