create_finetuning_data.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import json
23
import os
24
25
26
27

from absl import app
from absl import flags
import tensorflow as tf
28
29
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
30
# word-piece tokenizer based squad_lib
31
from official.nlp.data import squad_lib as squad_lib_wp
32
# sentence-piece tokenizer based squad_lib
33
from official.nlp.data import squad_lib_sp
34
35
36
37

FLAGS = flags.FLAGS

flags.DEFINE_enum(
Maxim Neumann's avatar
Maxim Neumann committed
38
39
    "fine_tuning_task_type", "classification",
    ["classification", "regression", "squad"],
40
41
42
    "The name of the BERT fine tuning task for which data "
    "will be generated..")

43
# BERT classification specific flags.
44
45
46
47
48
flags.DEFINE_string(
    "input_data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

49
flags.DEFINE_enum("classification_task_name", "MNLI",
Tianqi Liu's avatar
Tianqi Liu committed
50
                  ["COLA", "MNLI", "MRPC", "QNLI", "QQP", "SST-2", "XNLI",
Tianqi Liu's avatar
Tianqi Liu committed
51
52
53
54
55
56
                   "PAWS-X", "XTREME-XNLI", "XTREME-PAWS-X"],
                  "The name of the task to train BERT classifier. The "
                  "difference between XTREME-XNLI and XNLI is: 1. the format "
                  "of input tsv files; 2. the dev set for XTREME is english "
                  "only and for XNLI is all languages combined. Same for "
                  "PAWS-X.")
57

Tianqi Liu's avatar
Tianqi Liu committed
58
59
60
# XNLI task specific flag.
flags.DEFINE_string(
    "xnli_language", "en",
Tianqi Liu's avatar
Tianqi Liu committed
61
62
63
64
65
66
67
68
    "Language of training data for XNIL task. If the value is 'all', the data "
    "of all languages will be used for training.")

# PAWS-X task specific flag.
flags.DEFINE_string(
    "pawsx_language", "en",
    "Language of trainig data for PAWS-X task. If the value is 'all', the data "
    "of all languages will be used for training.")
Tianqi Liu's avatar
Tianqi Liu committed
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# BERT Squad task specific flags.
flags.DEFINE_string(
    "squad_data_file", None,
    "The input data file in for generating training data for BERT squad task.")

flags.DEFINE_integer(
    "doc_stride", 128,
    "When splitting up a long document into chunks, how much stride to "
    "take between chunks.")

flags.DEFINE_integer(
    "max_query_length", 64,
    "The maximum number of tokens for the question. Questions longer than "
    "this will be truncated to this length.")

85
86
87
88
flags.DEFINE_bool(
    "version_2_with_negative", False,
    "If true, the SQuAD examples contain some that do not have an answer.")

89
90
91
92
93
94
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "train_data_output_path", None,
95
    "The path in which generated training input data will be written as tf"
96
    " records.")
97
98
99

flags.DEFINE_string(
    "eval_data_output_path", None,
Tianqi Liu's avatar
Tianqi Liu committed
100
    "The path in which generated evaluation input data will be written as tf"
101
    " records.")
102

Tianqi Liu's avatar
Tianqi Liu committed
103
104
105
flags.DEFINE_string(
    "test_data_output_path", None,
    "The path in which generated test input data will be written as tf"
Tianqi Liu's avatar
Tianqi Liu committed
106
107
    " records. If None, do not generate test data. Must be a pattern template"
    " as test_{}.tfrecords if processor has language specific test data.")
Tianqi Liu's avatar
Tianqi Liu committed
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

123
124
125
126
127
128
129
130
131
flags.DEFINE_string("sp_model_file", "",
                    "The path to the model used by sentence piece tokenizer.")

flags.DEFINE_enum(
    "tokenizer_impl", "word_piece", ["word_piece", "sentence_piece"],
    "Specifies the tokenizer implementation, i.e., whehter to use word_piece "
    "or sentence_piece tokenizer. Canonical BERT uses word_piece tokenizer, "
    "while ALBERT uses sentence_piece tokenizer.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
133
134
135
136
flags.DEFINE_string("tfds_params", "",
                    "Comma-separated list of TFDS parameter assigments for "
                    "generic classfication data import (for more details "
                    "see the TfdsProcessor class documentation).")

137
138
139

def generate_classifier_dataset():
  """Generates classifier dataset and returns input meta data."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
141
  assert (FLAGS.input_data_dir and FLAGS.classification_task_name
          or FLAGS.tfds_params)
142

143
144
145
146
147
148
149
150
151
152
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
154
155
156
157
158
159
160
161
162
  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
        tfds_params=FLAGS.tfds_params,
        process_text_fn=processor_text_fn)
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
163
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164
165
166
        max_seq_length=FLAGS.max_seq_length)
  else:
    processors = {
Tianqi Liu's avatar
Tianqi Liu committed
167
168
169
170
171
172
173
174
        "cola":
            classifier_data_lib.ColaProcessor,
        "mnli":
            classifier_data_lib.MnliProcessor,
        "mrpc":
            classifier_data_lib.MrpcProcessor,
        "qnli":
            classifier_data_lib.QnliProcessor,
Saurabh Saxena's avatar
Saurabh Saxena committed
175
        "qqp": classifier_data_lib.QqpProcessor,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
        "rte": classifier_data_lib.RteProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
177
178
179
180
181
        "sst-2":
            classifier_data_lib.SstProcessor,
        "xnli":
            functools.partial(classifier_data_lib.XnliProcessor,
                              language=FLAGS.xnli_language),
Tianqi Liu's avatar
Tianqi Liu committed
182
183
        "paws-x":
            functools.partial(classifier_data_lib.PawsxProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
184
185
186
187
188
                              language=FLAGS.pawsx_language),
        "xtreme-xnli":
            functools.partial(classifier_data_lib.XtremeXnliProcessor),
        "xtreme-paws-x":
            functools.partial(classifier_data_lib.XtremePawsxProcessor)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
189
190
191
192
193
    }
    task_name = FLAGS.classification_task_name.lower()
    if task_name not in processors:
      raise ValueError("Task not found: %s" % (task_name))

Tianqi Liu's avatar
Tianqi Liu committed
194
    processor = processors[task_name](process_text_fn=processor_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
195
196
197
198
199
200
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        FLAGS.input_data_dir,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
201
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
202
        max_seq_length=FLAGS.max_seq_length)
203
204


Maxim Neumann's avatar
Maxim Neumann committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def generate_regression_dataset():
  """Generates regression dataset and returns input meta data."""
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
        tfds_params=FLAGS.tfds_params,
        process_text_fn=processor_text_fn)
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
        test_data_output_path=FLAGS.test_data_output_path,
        max_seq_length=FLAGS.max_seq_length)
  else:
    raise ValueError("No data processor found for the given regression task.")


233
234
235
def generate_squad_dataset():
  """Generates squad training dataset and returns input meta data."""
  assert FLAGS.squad_data_file
236
237
238
239
240
241
242
243
244
245
246
  if FLAGS.tokenizer_impl == "word_piece":
    return squad_lib_wp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.vocab_file, FLAGS.train_data_output_path,
        FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length,
        FLAGS.doc_stride, FLAGS.version_2_with_negative)
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    return squad_lib_sp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.sp_model_file,
        FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case,
        FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative)
247
248
249


def main(_):
250
251
252
253
254
255
256
257
258
259
  if FLAGS.tokenizer_impl == "word_piece":
    if not FLAGS.vocab_file:
      raise ValueError(
          "FLAG vocab_file for word-piece tokenizer is not specified.")
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    if not FLAGS.sp_model_file:
      raise ValueError(
          "FLAG sp_model_file for sentence-piece tokenizer is not specified.")

260
261
  if FLAGS.fine_tuning_task_type == "classification":
    input_meta_data = generate_classifier_dataset()
Maxim Neumann's avatar
Maxim Neumann committed
262
263
  elif FLAGS.fine_tuning_task_type == "regression":
    input_meta_data = generate_regression_dataset()
264
265
266
  else:
    input_meta_data = generate_squad_dataset()

267
  tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
268
269
270
271
272
273
274
275
  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_meta_data, indent=4) + "\n")


if __name__ == "__main__":
  flags.mark_flag_as_required("train_data_output_path")
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)