create_finetuning_data.py 7.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
23
24
25
26
import json

from absl import app
from absl import flags
import tensorflow as tf
27
28
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
29
# word-piece tokenizer based squad_lib
30
from official.nlp.data import squad_lib as squad_lib_wp
31
# sentence-piece tokenizer based squad_lib
32
from official.nlp.data import squad_lib_sp
33
34
35
36
37
38
39
40

FLAGS = flags.FLAGS

flags.DEFINE_enum(
    "fine_tuning_task_type", "classification", ["classification", "squad"],
    "The name of the BERT fine tuning task for which data "
    "will be generated..")

41
# BERT classification specific flags.
42
43
44
45
46
flags.DEFINE_string(
    "input_data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

47
flags.DEFINE_enum("classification_task_name", "MNLI",
48
                  ["COLA", "MNLI", "MRPC", "QNLI", "SST-2", "XNLI"],
49
                  "The name of the task to train BERT classifier.")
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

# BERT Squad task specific flags.
flags.DEFINE_string(
    "squad_data_file", None,
    "The input data file in for generating training data for BERT squad task.")

flags.DEFINE_integer(
    "doc_stride", 128,
    "When splitting up a long document into chunks, how much stride to "
    "take between chunks.")

flags.DEFINE_integer(
    "max_query_length", 64,
    "The maximum number of tokens for the question. Questions longer than "
    "this will be truncated to this length.")

66
67
68
69
flags.DEFINE_bool(
    "version_2_with_negative", False,
    "If true, the SQuAD examples contain some that do not have an answer.")

70
71
72
73
74
75
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "train_data_output_path", None,
76
    "The path in which generated training input data will be written as tf"
77
    " records.")
78
79
80

flags.DEFINE_string(
    "eval_data_output_path", None,
81
    "The path in which generated training input data will be written as tf"
82
    " records.")
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

98
99
100
101
102
103
104
105
106
flags.DEFINE_string("sp_model_file", "",
                    "The path to the model used by sentence piece tokenizer.")

flags.DEFINE_enum(
    "tokenizer_impl", "word_piece", ["word_piece", "sentence_piece"],
    "Specifies the tokenizer implementation, i.e., whehter to use word_piece "
    "or sentence_piece tokenizer. Canonical BERT uses word_piece tokenizer, "
    "while ALBERT uses sentence_piece tokenizer.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
108
109
110
111
flags.DEFINE_string("tfds_params", "",
                    "Comma-separated list of TFDS parameter assigments for "
                    "generic classfication data import (for more details "
                    "see the TfdsProcessor class documentation).")

112
113
114

def generate_classifier_dataset():
  """Generates classifier dataset and returns input meta data."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
116
  assert (FLAGS.input_data_dir and FLAGS.classification_task_name
          or FLAGS.tfds_params)
117

118
119
120
121
122
123
124
125
126
127
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
        tfds_params=FLAGS.tfds_params,
        process_text_fn=processor_text_fn)
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
        max_seq_length=FLAGS.max_seq_length)
  else:
    processors = {
        "cola": classifier_data_lib.ColaProcessor,
        "mnli": classifier_data_lib.MnliProcessor,
        "mrpc": classifier_data_lib.MrpcProcessor,
        "qnli": classifier_data_lib.QnliProcessor,
        "sst-2": classifier_data_lib.SstProcessor,
        "xnli": classifier_data_lib.XnliProcessor,
    }
    task_name = FLAGS.classification_task_name.lower()
    if task_name not in processors:
      raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name](processor_text_fn)
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        FLAGS.input_data_dir,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
        max_seq_length=FLAGS.max_seq_length)
160
161
162
163
164


def generate_squad_dataset():
  """Generates squad training dataset and returns input meta data."""
  assert FLAGS.squad_data_file
165
166
167
168
169
170
171
172
173
174
175
  if FLAGS.tokenizer_impl == "word_piece":
    return squad_lib_wp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.vocab_file, FLAGS.train_data_output_path,
        FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length,
        FLAGS.doc_stride, FLAGS.version_2_with_negative)
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    return squad_lib_sp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.sp_model_file,
        FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case,
        FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative)
176
177
178


def main(_):
179
180
181
182
183
184
185
186
187
188
  if FLAGS.tokenizer_impl == "word_piece":
    if not FLAGS.vocab_file:
      raise ValueError(
          "FLAG vocab_file for word-piece tokenizer is not specified.")
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    if not FLAGS.sp_model_file:
      raise ValueError(
          "FLAG sp_model_file for sentence-piece tokenizer is not specified.")

189
190
191
192
193
194
195
196
197
198
199
200
201
  if FLAGS.fine_tuning_task_type == "classification":
    input_meta_data = generate_classifier_dataset()
  else:
    input_meta_data = generate_squad_dataset()

  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_meta_data, indent=4) + "\n")


if __name__ == "__main__":
  flags.mark_flag_as_required("train_data_output_path")
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)