run_classifier.py 18.4 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
"""BERT classification or regression finetuning runner in TF 2.x."""
16

17
import functools
18
19
import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
import os
21

Hongkun Yu's avatar
Hongkun Yu committed
22
# Import libraries
23
24
25
from absl import app
from absl import flags
from absl import logging
Le Hou's avatar
Le Hou committed
26
import gin
27
import tensorflow as tf
28
from official.common import distribute_utils
29
from official.modeling import performance
30
from official.nlp import optimization
31
from official.nlp.bert import bert_models
32
from official.nlp.bert import common_flags
33
from official.nlp.bert import configs as bert_configs
34
35
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
36
from official.utils.misc import keras_utils
37
38

flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
39
40
    'mode', 'train_and_eval', ['train_and_eval', 'export_only', 'predict'],
    'One of {"train_and_eval", "export_only", "predict"}. `train_and_eval`: '
41
42
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
Hongkun Yu's avatar
Hongkun Yu committed
43
44
    'model_dir and export a `SavedModel`. `predict`: takes a checkpoint and '
    'restores the model to output predictions on the test set.')
45
46
47
48
49
50
51
52
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
53
54
55
flags.DEFINE_integer('train_data_size', None, 'Number of training samples '
                     'to use. If None, uses the full train data. '
                     '(default: None).')
Hongkun Yu's avatar
Hongkun Yu committed
56
57
flags.DEFINE_string('predict_checkpoint_path', None,
                    'Path to the checkpoint for predictions.')
Tianqi Liu's avatar
Tianqi Liu committed
58
59
60
61
62
63
flags.DEFINE_integer(
    'num_eval_per_epoch', 1,
    'Number of evaluations per epoch. The purpose of this flag is to provide '
    'more granular evaluation scores and checkpoints. For example, if original '
    'data has N samples and num_eval_per_epoch is n, then each epoch will be '
    'evaluated every N/n samples.')
64
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
65
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
66
67

common_flags.define_common_bert_flags()
68
69
70

FLAGS = flags.FLAGS

71
72
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}

73

74
def get_loss_fn(num_classes):
75
76
77
78
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
79
    labels = tf.reshape(labels, [-1])
80
81
82
83
84
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
85
    return tf.reduce_mean(per_example_loss)
86
87
88
89

  return classification_loss_fn


Tianqi Liu's avatar
Tianqi Liu committed
90
91
92
93
def get_dataset_fn(input_file_pattern,
                   max_seq_length,
                   global_batch_size,
                   is_training,
94
                   label_type=tf.int64,
95
96
                   include_sample_weights=False,
                   num_samples=None):
Hongkun Yu's avatar
Hongkun Yu committed
97
98
99
100
101
102
103
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
        tf.io.gfile.glob(input_file_pattern),
Hongkun Yu's avatar
Hongkun Yu committed
105
106
107
        max_seq_length,
        batch_size,
        is_training=is_training,
108
        input_pipeline_context=ctx,
109
        label_type=label_type,
110
111
        include_sample_weights=include_sample_weights,
        num_samples=num_samples)
Hongkun Yu's avatar
Hongkun Yu committed
112
113
114
115
116
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
118
119
120
121
122
123
124
125
126
127
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
128
129
                        train_input_fn,
                        eval_input_fn,
130
                        training_callbacks=True,
131
132
                        custom_callbacks=None,
                        custom_metrics=None):
133
134
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
135
136
  num_classes = input_meta_data.get('num_labels', 1)
  is_regression = num_classes == 1
137
138

  def _get_classifier_model():
139
    """Gets a classifier model."""
140
    classifier_model, core_model = (
141
142
143
144
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
145
146
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
Hongkun Yu's avatar
Hongkun Yu committed
147
148
149
150
    optimizer = optimization.create_optimizer(initial_lr,
                                              steps_per_epoch * epochs,
                                              warmup_steps, FLAGS.end_lr,
                                              FLAGS.optimizer_type)
151
152
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
153
        use_float16=common_flags.use_float16())
154
155
    return classifier_model, core_model

156
157
158
159
160
161
  # tf.keras.losses objects accept optional sample_weight arguments (eg. coming
  # from the dataset) to compute weighted loss, as used for the regression
  # tasks. The classification tasks, using the custom get_loss_fn don't accept
  # sample weights though.
  loss_fn = (tf.keras.losses.MeanSquaredError() if is_regression
             else get_loss_fn(num_classes))
162
163
164

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
165
166
167
  if custom_metrics:
    metric_fn = custom_metrics
  elif is_regression:
Tianqi Liu's avatar
Tianqi Liu committed
168
169
170
171
    metric_fn = functools.partial(
        tf.keras.metrics.MeanSquaredError,
        'mean_squared_error',
        dtype=tf.float32)
172
  else:
Tianqi Liu's avatar
Tianqi Liu committed
173
174
175
176
    metric_fn = functools.partial(
        tf.keras.metrics.SparseCategoricalAccuracy,
        'accuracy',
        dtype=tf.float32)
177
178
179

  # Start training using Keras compile/fit API.
  logging.info('Training using TF 2.x Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
180
               'distribution strategy.')
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  return run_keras_compile_fit(
      model_dir,
      strategy,
      _get_classifier_model,
      train_input_fn,
      eval_input_fn,
      loss_fn,
      metric_fn,
      init_checkpoint,
      epochs,
      steps_per_epoch,
      steps_per_loop,
      eval_steps,
      training_callbacks=training_callbacks,
      custom_callbacks=custom_callbacks)
196
197


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
199
200
201
202
203
204
205
206
207
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
208
                          steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
209
                          eval_steps,
210
                          training_callbacks=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
213
214
215
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
Le Hou's avatar
Le Hou committed
216
    evaluation_dataset = eval_input_fn() if eval_input_fn else None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
219
220
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
Chen Chen's avatar
Chen Chen committed
221
222
      checkpoint = tf.train.Checkpoint(model=sub_model, encoder=sub_model)
      checkpoint.read(init_checkpoint).assert_existing_objects_matched()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
223

224
225
    if not isinstance(metric_fn, (list, tuple)):
      metric_fn = [metric_fn]
Hongkun Yu's avatar
Hongkun Yu committed
226
227
228
    bert_model.compile(
        optimizer=optimizer,
        loss=loss_fn,
229
        metrics=[fn() for fn in metric_fn],
230
        steps_per_execution=steps_per_loop)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
231

232
233
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
Hongkun Yu's avatar
Hongkun Yu committed
234
235
236
237
238
239
240
241
    checkpoint = tf.train.Checkpoint(model=bert_model, optimizer=optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        directory=model_dir,
        max_to_keep=None,
        step_counter=optimizer.iterations,
        checkpoint_interval=0)
    checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242

243
244
245
246
247
    if training_callbacks:
      if custom_callbacks is not None:
        custom_callbacks += [summary_callback, checkpoint_callback]
      else:
        custom_callbacks = [summary_callback, checkpoint_callback]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
248

249
    history = bert_model.fit(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
250
251
252
253
254
255
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)
256
257
258
259
260
261
    stats = {'total_training_steps': steps_per_epoch * epochs}
    if 'loss' in history.history:
      stats['train_loss'] = history.history['loss'][-1]
    if 'val_accuracy' in history.history:
      stats['eval_metrics'] = history.history['val_accuracy'][-1]
    return bert_model, stats
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
262
263


Hongkun Yu's avatar
Hongkun Yu committed
264
265
266
def get_predictions_and_labels(strategy,
                               trained_model,
                               eval_input_fn,
267
                               is_regression=False,
Hongkun Yu's avatar
Hongkun Yu committed
268
                               return_probs=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
269
270
271
272
273
274
275
276
277
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
278
    is_regression: Whether it is a regression task.
Hongkun Yu's avatar
Hongkun Yu committed
279
    return_probs: Whether to return probabilities of classes.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
280
281
282
283
284
285
286
287
288
289
290
291
292

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
Hongkun Yu's avatar
Hongkun Yu committed
293
      logits = trained_model(inputs, training=False)
294
      if not is_regression:
295
296
297
298
        probabilities = tf.nn.softmax(logits)
        return probabilities, labels
      else:
        return logits, labels
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299

Hongkun Yu's avatar
Hongkun Yu committed
300
    outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
302
303
304
305
306
307
308
309
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
Hongkun Yu's avatar
Hongkun Yu committed
310
311
312
313
314
315
316
317
318
319
320
321
    try:
      with tf.experimental.async_scope():
        while True:
          probabilities, labels = test_step(test_iterator)
          for cur_probs, cur_labels in zip(probabilities, labels):
            if return_probs:
              preds.extend(cur_probs.numpy().tolist())
            else:
              preds.extend(tf.math.argmax(cur_probs, axis=1).numpy())
            golds.extend(cur_labels.numpy().tolist())
    except (StopIteration, tf.errors.OutOfRangeError):
      tf.experimental.async_clear_error()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
322
323
    return preds, golds

Chenkai Kuang's avatar
Chenkai Kuang committed
324
  test_iter = iter(strategy.distribute_datasets_from_function(eval_input_fn))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
325
326
327
328
329
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


Hongkun Yu's avatar
Hongkun Yu committed
330
331
def export_classifier(model_export_path, input_meta_data, bert_config,
                      model_dir):
332
333
334
335
336
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
337
338
339
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
340
341
342
343
344
345

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
346
347
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
348

Zongwei Zhou's avatar
Zongwei Zhou committed
349
  # Export uses float32 for now, even if training uses mixed precision.
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
350
  tf.keras.mixed_precision.set_global_policy('float32')
351
  classifier_model = bert_models.classifier_model(
352
353
354
355
      bert_config,
      input_meta_data.get('num_labels', 1),
      hub_module_url=FLAGS.hub_module_url,
      hub_module_trainable=False)[0]
356

357
  model_saving_utils.export_bert_model(
Hongkun Yu's avatar
Hongkun Yu committed
358
      model_export_path, model=classifier_model, checkpoint_dir=model_dir)
359
360


Hongkun Yu's avatar
Hongkun Yu committed
361
362
def run_bert(strategy,
             input_meta_data,
363
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
364
             train_input_fn=None,
Le Hou's avatar
Le Hou committed
365
             eval_input_fn=None,
366
             init_checkpoint=None,
367
368
             custom_callbacks=None,
             custom_metrics=None):
369
  """Run BERT training."""
370
  # Enables XLA in Session Config. Should not be set for TPU.
371
  keras_utils.set_session_config(FLAGS.enable_xla)
372
  performance.set_mixed_precision_policy(common_flags.dtype())
373

Tianqi Liu's avatar
Tianqi Liu committed
374
375
376
  epochs = FLAGS.num_train_epochs * FLAGS.num_eval_per_epoch
  train_data_size = (
      input_meta_data['train_data_size'] // FLAGS.num_eval_per_epoch)
377
378
379
  if FLAGS.train_data_size:
    train_data_size = min(train_data_size, FLAGS.train_data_size)
    logging.info('Updated train_data_size: %s', train_data_size)
380
381
382
383
384
385
386
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
387

388
389
390
  if not custom_callbacks:
    custom_callbacks = []

391
  if FLAGS.log_steps:
Hongkun Yu's avatar
Hongkun Yu committed
392
393
394
395
396
    custom_callbacks.append(
        keras_utils.TimeHistory(
            batch_size=FLAGS.train_batch_size,
            log_steps=FLAGS.log_steps,
            logdir=FLAGS.model_dir))
397

398
  trained_model, _ = run_bert_classifier(
399
      strategy,
400
      model_config,
401
402
403
404
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
405
      FLAGS.steps_per_loop,
406
407
408
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
Le Hou's avatar
Le Hou committed
409
      init_checkpoint or FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
410
411
      train_input_fn,
      eval_input_fn,
412
413
      custom_callbacks=custom_callbacks,
      custom_metrics=custom_metrics)
414

415
  if FLAGS.model_export_path:
416
    model_saving_utils.export_bert_model(
Hongkun Yu's avatar
Hongkun Yu committed
417
        FLAGS.model_export_path, model=trained_model)
418
419
  return trained_model

420

421
def custom_main(custom_callbacks=None, custom_metrics=None):
422
  """Run classification or regression.
423

424
425
  Args:
    custom_callbacks: list of tf.keras.Callbacks passed to training loop.
426
    custom_metrics: list of metrics passed to the training loop.
427
  """
Le Hou's avatar
Le Hou committed
428
429
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)

430
431
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))
432
  label_type = LABEL_TYPES_MAP[input_meta_data.get('label_type', 'int')]
433
  include_sample_weights = input_meta_data.get('has_sample_weights', False)
434
435
436
437

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

Hongkun Yu's avatar
Hongkun Yu committed
438
439
440
441
442
443
444
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.mode == 'export_only':
    export_classifier(FLAGS.model_export_path, input_meta_data, bert_config,
                      FLAGS.model_dir)
    return

445
  strategy = distribute_utils.get_distribution_strategy(
446
447
448
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Hongkun Yu's avatar
Hongkun Yu committed
449
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
450
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
451
      input_meta_data['max_seq_length'],
Hongkun Yu's avatar
Hongkun Yu committed
452
      FLAGS.eval_batch_size,
453
      is_training=False,
454
455
      label_type=label_type,
      include_sample_weights=include_sample_weights)
Hongkun Yu's avatar
Hongkun Yu committed
456

Hongkun Yu's avatar
Hongkun Yu committed
457
  if FLAGS.mode == 'predict':
458
    num_labels = input_meta_data.get('num_labels', 1)
Hongkun Yu's avatar
Hongkun Yu committed
459
460
    with strategy.scope():
      classifier_model = bert_models.classifier_model(
461
          bert_config, num_labels)[0]
Hongkun Yu's avatar
Hongkun Yu committed
462
463
464
465
466
467
468
469
470
471
      checkpoint = tf.train.Checkpoint(model=classifier_model)
      latest_checkpoint_file = (
          FLAGS.predict_checkpoint_path or
          tf.train.latest_checkpoint(FLAGS.model_dir))
      assert latest_checkpoint_file
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
      checkpoint.restore(
          latest_checkpoint_file).assert_existing_objects_matched()
      preds, _ = get_predictions_and_labels(
472
473
474
475
476
          strategy,
          classifier_model,
          eval_input_fn,
          is_regression=(num_labels == 1),
          return_probs=True)
Hongkun Yu's avatar
Hongkun Yu committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
    with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
      logging.info('***** Predict results *****')
      for probabilities in preds:
        output_line = '\t'.join(
            str(class_probability)
            for class_probability in probabilities) + '\n'
        writer.write(output_line)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  train_input_fn = get_dataset_fn(
      FLAGS.train_data_path,
      input_meta_data['max_seq_length'],
      FLAGS.train_batch_size,
493
      is_training=True,
494
      label_type=label_type,
495
496
      include_sample_weights=include_sample_weights,
      num_samples=FLAGS.train_data_size)
Hongkun Yu's avatar
Hongkun Yu committed
497
498
499
500
501
502
  run_bert(
      strategy,
      input_meta_data,
      bert_config,
      train_input_fn,
      eval_input_fn,
503
504
      custom_callbacks=custom_callbacks,
      custom_metrics=custom_metrics)
505
506
507


def main(_):
508
  custom_main(custom_callbacks=None, custom_metrics=None)
509
510
511
512
513


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
514
  flags.mark_flag_as_required('model_dir')
515
  app.run(main)