run_classifier.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
import os
25
26
27
28
29
30

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

31
32
33
34
35
36
37
38
# pylint: disable=g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
39
from official.utils.misc import keras_utils
40
from official.utils.misc import tpu_lib
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
58
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
59
60

common_flags.define_common_bert_flags()
61
62
63
64

FLAGS = flags.FLAGS


65
def get_loss_fn(num_classes, loss_factor=1.0):
66
67
68
69
70
71
72
73
74
75
76
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
77
    loss *= loss_factor
78
79
80
81
82
    return loss

  return classification_loss_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
87
88
89
90
91
92
93
94
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
                        custom_callbacks=None,
95
96
                        run_eagerly=False,
                        use_keras_compile_fit=False):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  train_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.train_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.train_batch_size)
  eval_input_fn = functools.partial(
      input_pipeline.create_classifier_dataset,
      FLAGS.eval_data_path,
      seq_length=max_seq_length,
      batch_size=FLAGS.eval_batch_size,
      is_training=False,
      drop_remainder=False)

  def _get_classifier_model():
115
    """Gets a classifier model."""
116
    classifier_model, core_model = (
117
118
119
120
121
122
        bert_models.classifier_model(
            bert_config,
            tf.float32,
            num_classes,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url))
123
124
    classifier_model.optimizer = optimization.create_optimizer(
        initial_lr, steps_per_epoch * epochs, warmup_steps)
125
126
127
128
129
130
131
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
132
          classifier_model.optimizer)
133
134
    return classifier_model, core_model

135
136
137
138
139
140
141
142
143
144
145
  # During distributed training, loss used for gradient computation is
  # summed over from all replicas. When Keras compile/fit() API is used,
  # the fit() API internally normalizes the loss by dividing the loss by
  # the number of replicas used for computation. However, when custom
  # training loop is used this is not done automatically and should be
  # done manually by the end user.
  loss_multiplier = 1.0
  if FLAGS.scale_loss and not use_keras_compile_fit:
    loss_multiplier = 1.0 / strategy.num_replicas_in_sync

  loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier)
146
147
148
149
150
151
152

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

153
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
                 'distrubuted strategy.')
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
        eval_steps,
        custom_callbacks=None)

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
               'distrubuted strategy.')
174
175
176
177
178
179
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
180
      steps_per_loop=steps_per_loop,
181
182
183
184
185
186
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
187
188
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
189
190


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

    bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])

217
218
219
220
221
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


239
240
def export_classifier(model_export_path, input_meta_data,
                      restore_model_using_load_weights):
241
242
243
244
245
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
246
247
248
249
250
251
252
253
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
      for custom checkpoint or to use model.load_weights() API.
      There are 2 different ways to save checkpoints. One is using
      tf.train.Checkpoint and another is using Keras model.save_weights().
      Custom training loop implementation uses tf.train.Checkpoint API
      and Keras ModelCheckpoint callback internally uses model.save_weights()
      API. Since these two API's cannot be used toghether, model loading logic
      must be take into account how model checkpoint was saved.
254
255
256
257
258
259
260
261

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

262
263
264
  classifier_model = bert_models.classifier_model(
      bert_config, tf.float32, input_meta_data['num_labels'],
      input_meta_data['max_seq_length'])[0]
265

266
  model_saving_utils.export_bert_model(
267
268
269
270
      model_export_path,
      model=classifier_model,
      checkpoint_dir=FLAGS.model_dir,
      restore_model_using_load_weights=restore_model_using_load_weights)
271
272
273
274
275


def run_bert(strategy, input_meta_data):
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
276
277
278
279
280
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
                      FLAGS.use_keras_compile_fit)
281
282
283
284
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
285
286
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
287
288
289
290
291
292
293
294
295
296
297

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
298
299

  trained_model = run_bert_classifier(
300
301
302
303
304
305
      strategy,
      bert_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
306
      FLAGS.steps_per_loop,
307
308
309
310
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
311
312
      run_eagerly=FLAGS.run_eagerly,
      use_keras_compile_fit=FLAGS.use_keras_compile_fit)
313

314
  if FLAGS.model_export_path:
315
316
317
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
318
    model_saving_utils.export_bert_model(
319
320
321
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
322
323
  return trained_model

324
325
326
327

def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
328

329
330
331
332
333
334
335
336
337
338
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

  strategy = None
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == 'tpu':
339
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
340
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
341
342
343
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
344
345
346
347
348
349
  run_bert(strategy, input_meta_data)


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
350
  flags.mark_flag_as_required('model_dir')
351
  app.run(main)