run_classifier.py 17.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT classification or regression finetuning runner in TF 2.x."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import functools
21
22
import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
import os
24
25
26
27

from absl import app
from absl import flags
from absl import logging
Le Hou's avatar
Le Hou committed
28
import gin
29
import tensorflow as tf
30
from official.modeling import performance
31
from official.nlp import optimization
32
from official.nlp.bert import bert_models
33
from official.nlp.bert import common_flags
34
from official.nlp.bert import configs as bert_configs
35
36
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39
40

flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
41
42
    'mode', 'train_and_eval', ['train_and_eval', 'export_only', 'predict'],
    'One of {"train_and_eval", "export_only", "predict"}. `train_and_eval`: '
43
44
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
Hongkun Yu's avatar
Hongkun Yu committed
45
46
    'model_dir and export a `SavedModel`. `predict`: takes a checkpoint and '
    'restores the model to output predictions on the test set.')
47
48
49
50
51
52
53
54
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
Hongkun Yu's avatar
Hongkun Yu committed
55
56
flags.DEFINE_string('predict_checkpoint_path', None,
                    'Path to the checkpoint for predictions.')
Tianqi Liu's avatar
Tianqi Liu committed
57
58
59
60
61
62
flags.DEFINE_integer(
    'num_eval_per_epoch', 1,
    'Number of evaluations per epoch. The purpose of this flag is to provide '
    'more granular evaluation scores and checkpoints. For example, if original '
    'data has N samples and num_eval_per_epoch is n, then each epoch will be '
    'evaluated every N/n samples.')
63
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
64
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
65
66

common_flags.define_common_bert_flags()
67
68
69

FLAGS = flags.FLAGS

70
71
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}

72

73
def get_loss_fn(num_classes):
74
75
76
77
78
79
80
81
82
83
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
84
    return tf.reduce_mean(per_example_loss)
85
86
87
88

  return classification_loss_fn


89
90
91
92
93
94
95
96
97
98
99
100
def get_regression_loss_fn():
  """Gets the regression loss function."""

  def regression_loss_fn(labels, logits):
    """Regression loss."""
    labels = tf.cast(labels, dtype=tf.float32)
    per_example_loss = tf.math.squared_difference(labels, logits)
    return tf.reduce_mean(per_example_loss)

  return regression_loss_fn


Tianqi Liu's avatar
Tianqi Liu committed
101
102
103
104
105
def get_dataset_fn(input_file_pattern,
                   max_seq_length,
                   global_batch_size,
                   is_training,
                   label_type=tf.int64):
Hongkun Yu's avatar
Hongkun Yu committed
106
107
108
109
110
111
112
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
        tf.io.gfile.glob(input_file_pattern),
Hongkun Yu's avatar
Hongkun Yu committed
114
115
116
        max_seq_length,
        batch_size,
        is_training=is_training,
117
118
        input_pipeline_context=ctx,
        label_type=label_type)
Hongkun Yu's avatar
Hongkun Yu committed
119
120
121
122
123
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
124
125
126
127
128
129
130
131
132
133
134
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
135
136
                        train_input_fn,
                        eval_input_fn,
137
138
                        training_callbacks=True,
                        custom_callbacks=None):
139
140
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
141
142
  num_classes = input_meta_data.get('num_labels', 1)
  is_regression = num_classes == 1
143
144

  def _get_classifier_model():
145
    """Gets a classifier model."""
146
    classifier_model, core_model = (
147
148
149
150
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
151
152
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
Hongkun Yu's avatar
Hongkun Yu committed
153
154
155
156
    optimizer = optimization.create_optimizer(initial_lr,
                                              steps_per_epoch * epochs,
                                              warmup_steps, FLAGS.end_lr,
                                              FLAGS.optimizer_type)
157
158
159
160
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
161
162
    return classifier_model, core_model

Tianqi Liu's avatar
Tianqi Liu committed
163
164
  loss_fn = (
      get_regression_loss_fn() if is_regression else get_loss_fn(num_classes))
165
166
167

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
168
  if is_regression:
Tianqi Liu's avatar
Tianqi Liu committed
169
170
171
172
    metric_fn = functools.partial(
        tf.keras.metrics.MeanSquaredError,
        'mean_squared_error',
        dtype=tf.float32)
173
  else:
Tianqi Liu's avatar
Tianqi Liu committed
174
175
176
177
    metric_fn = functools.partial(
        tf.keras.metrics.SparseCategoricalAccuracy,
        'accuracy',
        dtype=tf.float32)
178
179
180

  # Start training using Keras compile/fit API.
  logging.info('Training using TF 2.x Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
181
               'distribution strategy.')
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
  return run_keras_compile_fit(
      model_dir,
      strategy,
      _get_classifier_model,
      train_input_fn,
      eval_input_fn,
      loss_fn,
      metric_fn,
      init_checkpoint,
      epochs,
      steps_per_epoch,
      steps_per_loop,
      eval_steps,
      training_callbacks=training_callbacks,
      custom_callbacks=custom_callbacks)
197
198


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
199
200
201
202
203
204
205
206
207
208
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
209
                          steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
                          eval_steps,
211
                          training_callbacks=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
215
216
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
Le Hou's avatar
Le Hou committed
217
    evaluation_dataset = eval_input_fn() if eval_input_fn else None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
218
219
220
221
222
223
224
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

Hongkun Yu's avatar
Hongkun Yu committed
225
226
227
228
229
    bert_model.compile(
        optimizer=optimizer,
        loss=loss_fn,
        metrics=[metric_fn()],
        experimental_steps_per_execution=steps_per_loop)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230

231
232
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
Hongkun Yu's avatar
Hongkun Yu committed
233
234
235
236
237
238
239
240
    checkpoint = tf.train.Checkpoint(model=bert_model, optimizer=optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        directory=model_dir,
        max_to_keep=None,
        step_counter=optimizer.iterations,
        checkpoint_interval=0)
    checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241

242
243
244
245
246
    if training_callbacks:
      if custom_callbacks is not None:
        custom_callbacks += [summary_callback, checkpoint_callback]
      else:
        custom_callbacks = [summary_callback, checkpoint_callback]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
247

248
    history = bert_model.fit(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
249
250
251
252
253
254
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)
255
256
257
258
259
260
    stats = {'total_training_steps': steps_per_epoch * epochs}
    if 'loss' in history.history:
      stats['train_loss'] = history.history['loss'][-1]
    if 'val_accuracy' in history.history:
      stats['eval_metrics'] = history.history['val_accuracy'][-1]
    return bert_model, stats
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
261
262


Hongkun Yu's avatar
Hongkun Yu committed
263
264
265
266
def get_predictions_and_labels(strategy,
                               trained_model,
                               eval_input_fn,
                               return_probs=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
268
269
270
271
272
273
274
275
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
Hongkun Yu's avatar
Hongkun Yu committed
276
    return_probs: Whether to return probabilities of classes.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
277
278
279
280
281
282
283
284
285
286
287
288
289

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
Hongkun Yu's avatar
Hongkun Yu committed
290
291
292
      logits = trained_model(inputs, training=False)
      probabilities = tf.nn.softmax(logits)
      return probabilities, labels
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
293

Hongkun Yu's avatar
Hongkun Yu committed
294
    outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
295
296
297
298
299
300
301
302
303
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
Hongkun Yu's avatar
Hongkun Yu committed
304
305
306
307
308
309
310
311
312
313
314
315
    try:
      with tf.experimental.async_scope():
        while True:
          probabilities, labels = test_step(test_iterator)
          for cur_probs, cur_labels in zip(probabilities, labels):
            if return_probs:
              preds.extend(cur_probs.numpy().tolist())
            else:
              preds.extend(tf.math.argmax(cur_probs, axis=1).numpy())
            golds.extend(cur_labels.numpy().tolist())
    except (StopIteration, tf.errors.OutOfRangeError):
      tf.experimental.async_clear_error()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
316
317
318
319
320
321
322
323
324
    return preds, golds

  test_iter = iter(
      strategy.experimental_distribute_datasets_from_function(eval_input_fn))
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


Hongkun Yu's avatar
Hongkun Yu committed
325
326
def export_classifier(model_export_path, input_meta_data, bert_config,
                      model_dir):
327
328
329
330
331
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
332
333
334
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
335
336
337
338
339
340

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
341
342
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
343

Zongwei Zhou's avatar
Zongwei Zhou committed
344
345
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
346
  classifier_model = bert_models.classifier_model(
347
      bert_config, input_meta_data.get('num_labels', 1))[0]
348

349
  model_saving_utils.export_bert_model(
Hongkun Yu's avatar
Hongkun Yu committed
350
      model_export_path, model=classifier_model, checkpoint_dir=model_dir)
351
352


Hongkun Yu's avatar
Hongkun Yu committed
353
354
def run_bert(strategy,
             input_meta_data,
355
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
356
             train_input_fn=None,
Le Hou's avatar
Le Hou committed
357
             eval_input_fn=None,
358
359
             init_checkpoint=None,
             custom_callbacks=None):
360
  """Run BERT training."""
361
  # Enables XLA in Session Config. Should not be set for TPU.
362
  keras_utils.set_session_config(FLAGS.enable_xla)
363
  performance.set_mixed_precision_policy(common_flags.dtype())
364

Tianqi Liu's avatar
Tianqi Liu committed
365
366
367
  epochs = FLAGS.num_train_epochs * FLAGS.num_eval_per_epoch
  train_data_size = (
      input_meta_data['train_data_size'] // FLAGS.num_eval_per_epoch)
368
369
370
371
372
373
374
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
375

376
377
378
  if not custom_callbacks:
    custom_callbacks = []

379
  if FLAGS.log_steps:
Hongkun Yu's avatar
Hongkun Yu committed
380
381
382
383
384
    custom_callbacks.append(
        keras_utils.TimeHistory(
            batch_size=FLAGS.train_batch_size,
            log_steps=FLAGS.log_steps,
            logdir=FLAGS.model_dir))
385

386
  trained_model, _ = run_bert_classifier(
387
      strategy,
388
      model_config,
389
390
391
392
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
393
      FLAGS.steps_per_loop,
394
395
396
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
Le Hou's avatar
Le Hou committed
397
      init_checkpoint or FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
398
399
      train_input_fn,
      eval_input_fn,
400
      custom_callbacks=custom_callbacks)
401

402
  if FLAGS.model_export_path:
403
    model_saving_utils.export_bert_model(
Hongkun Yu's avatar
Hongkun Yu committed
404
        FLAGS.model_export_path, model=trained_model)
405
406
  return trained_model

407

408
def custom_main(custom_callbacks=None):
409
  """Run classification or regression.
410

411
412
413
  Args:
    custom_callbacks: list of tf.keras.Callbacks passed to training loop.
  """
Le Hou's avatar
Le Hou committed
414
415
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)

416
417
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))
418
  label_type = LABEL_TYPES_MAP[input_meta_data.get('label_type', 'int')]
419
420
421
422

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

Hongkun Yu's avatar
Hongkun Yu committed
423
424
425
426
427
428
429
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.mode == 'export_only':
    export_classifier(FLAGS.model_export_path, input_meta_data, bert_config,
                      FLAGS.model_dir)
    return

430
431
432
433
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Hongkun Yu's avatar
Hongkun Yu committed
434
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
435
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
436
      input_meta_data['max_seq_length'],
Hongkun Yu's avatar
Hongkun Yu committed
437
      FLAGS.eval_batch_size,
438
439
      is_training=False,
      label_type=label_type)
Hongkun Yu's avatar
Hongkun Yu committed
440

Hongkun Yu's avatar
Hongkun Yu committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
  if FLAGS.mode == 'predict':
    with strategy.scope():
      classifier_model = bert_models.classifier_model(
          bert_config, input_meta_data['num_labels'])[0]
      checkpoint = tf.train.Checkpoint(model=classifier_model)
      latest_checkpoint_file = (
          FLAGS.predict_checkpoint_path or
          tf.train.latest_checkpoint(FLAGS.model_dir))
      assert latest_checkpoint_file
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
      checkpoint.restore(
          latest_checkpoint_file).assert_existing_objects_matched()
      preds, _ = get_predictions_and_labels(
          strategy, classifier_model, eval_input_fn, return_probs=True)
    output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
    with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
      logging.info('***** Predict results *****')
      for probabilities in preds:
        output_line = '\t'.join(
            str(class_probability)
            for class_probability in probabilities) + '\n'
        writer.write(output_line)
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
  train_input_fn = get_dataset_fn(
      FLAGS.train_data_path,
      input_meta_data['max_seq_length'],
      FLAGS.train_batch_size,
472
473
      is_training=True,
      label_type=label_type)
Hongkun Yu's avatar
Hongkun Yu committed
474
475
476
477
478
479
480
  run_bert(
      strategy,
      input_meta_data,
      bert_config,
      train_input_fn,
      eval_input_fn,
      custom_callbacks=custom_callbacks)
481
482
483
484


def main(_):
  custom_main(custom_callbacks=None)
485
486
487
488
489


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
490
  flags.mark_flag_as_required('model_dir')
491
  app.run(main)