run_classifier.py 15.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT classification finetuning runner in TF 2.x."""
16
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import os
23
24
25
26

from absl import app
from absl import flags
from absl import logging
Le Hou's avatar
Le Hou committed
27
import gin
28
import tensorflow as tf
29
from official.modeling import performance
30
from official.nlp import optimization
31
from official.nlp.bert import bert_models
32
from official.nlp.bert import common_flags
33
from official.nlp.bert import configs as bert_configs
34
35
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
36
from official.nlp.bert import model_training_utils
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
57
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
58
59

common_flags.define_common_bert_flags()
60
61
62
63

FLAGS = flags.FLAGS


64
def get_loss_fn(num_classes):
65
66
67
68
69
70
71
72
73
74
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
75
    return tf.reduce_mean(per_example_loss)
76
77
78
79

  return classification_loss_fn


Hongkun Yu's avatar
Hongkun Yu committed
80
81
82
83
84
85
86
87
88
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
        tf.io.gfile.glob(input_file_pattern),
Hongkun Yu's avatar
Hongkun Yu committed
90
91
92
93
94
95
96
97
98
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
101
102
103
104
105
106
107
108
109
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
110
111
                        train_input_fn,
                        eval_input_fn,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
                        custom_callbacks=None,
113
114
                        run_eagerly=False,
                        use_keras_compile_fit=False):
115
116
117
118
119
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  def _get_classifier_model():
120
    """Gets a classifier model."""
121
    classifier_model, core_model = (
122
123
124
125
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
127
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
128
    optimizer = optimization.create_optimizer(
129
        initial_lr, steps_per_epoch * epochs, warmup_steps,
130
        FLAGS.end_lr, FLAGS.optimizer_type)
131
132
133
134
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
135
136
    return classifier_model, core_model

137
  loss_fn = get_loss_fn(num_classes)
138
139
140
141
142
143
144

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

145
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
146
147
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
148
                 'distribution strategy.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
150
151
152
153
154
155
156
157
158
159
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
160
        steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
        eval_steps,
162
        custom_callbacks=custom_callbacks)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
163
164
165

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
166
               'distribution strategy.')
167
168
169
170
171
172
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
173
      steps_per_loop=steps_per_loop,
174
175
176
177
178
179
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
180
181
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
182
183


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
184
185
186
187
188
189
190
191
192
193
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
Hongkun Yu's avatar
Hongkun Yu committed
194
                          steps_per_loop,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
195
196
197
198
199
200
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
Le Hou's avatar
Le Hou committed
201
    evaluation_dataset = eval_input_fn() if eval_input_fn else None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
202
203
204
205
206
207
208
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

Hongkun Yu's avatar
Hongkun Yu committed
209
210
211
212
213
    bert_model.compile(
        optimizer=optimizer,
        loss=loss_fn,
        metrics=[metric_fn()],
        experimental_steps_per_execution=steps_per_loop)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
214

215
216
217
218
219
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def get_predictions_and_labels(strategy, trained_model, eval_input_fn,
                               eval_steps):
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
    eval_steps: Number of evaluation steps.

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
      model_outputs = trained_model(inputs, training=False)
      return model_outputs, labels

Ken Franko's avatar
Ken Franko committed
265
    outputs, labels = strategy.run(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        _test_step_fn, args=(next(iterator),))
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
    for _ in range(eval_steps):
      logits, labels = test_step(test_iterator)
      for cur_logits, cur_labels in zip(logits, labels):
        preds.extend(tf.math.argmax(cur_logits, axis=1).numpy())
        golds.extend(cur_labels.numpy().tolist())
    return preds, golds

  test_iter = iter(
      strategy.experimental_distribute_datasets_from_function(eval_input_fn))
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


290
def export_classifier(model_export_path, input_meta_data,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
291
                      restore_model_using_load_weights, bert_config, model_dir):
292
293
294
295
296
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
297
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
298
299
300
301
302
303
304
      for custom checkpoint or to use model.load_weights() API. There are 2
      different ways to save checkpoints. One is using tf.train.Checkpoint and
      another is using Keras model.save_weights(). Custom training loop
      implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint
      callback internally uses model.save_weights() API. Since these two API's
      cannot be used together, model loading logic must be take into account how
      model checkpoint was saved.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
305
306
307
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
308
309
310
311
312
313

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
314
315
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
316

Zongwei Zhou's avatar
Zongwei Zhou committed
317
318
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
319
  classifier_model = bert_models.classifier_model(
Zongwei Zhou's avatar
Zongwei Zhou committed
320
      bert_config, input_meta_data['num_labels'],
321
      input_meta_data['max_seq_length'])[0]
322

323
  model_saving_utils.export_bert_model(
324
325
      model_export_path,
      model=classifier_model,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
326
      checkpoint_dir=model_dir,
327
      restore_model_using_load_weights=restore_model_using_load_weights)
328
329


Hongkun Yu's avatar
Hongkun Yu committed
330
331
def run_bert(strategy,
             input_meta_data,
332
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
333
             train_input_fn=None,
Le Hou's avatar
Le Hou committed
334
             eval_input_fn=None,
335
336
             init_checkpoint=None,
             custom_callbacks=None):
337
338
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
339
340
341
342
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
343
                      FLAGS.use_keras_compile_fit,
344
                      model_config, FLAGS.model_dir)
345
346
347
348
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
349
350
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
351
  performance.set_mixed_precision_policy(common_flags.dtype())
352
353
354
355
356
357
358
359
360
361

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
362

363
364
365
  if not custom_callbacks:
    custom_callbacks = []

366
  if FLAGS.log_steps:
367
    custom_callbacks.append(keras_utils.TimeHistory(
368
369
        batch_size=FLAGS.train_batch_size,
        log_steps=FLAGS.log_steps,
370
        logdir=FLAGS.model_dir))
371

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
372
  trained_model = run_bert_classifier(
373
      strategy,
374
      model_config,
375
376
377
378
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
379
      FLAGS.steps_per_loop,
380
381
382
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
Le Hou's avatar
Le Hou committed
383
      init_checkpoint or FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
384
385
      train_input_fn,
      eval_input_fn,
386
      run_eagerly=FLAGS.run_eagerly,
387
388
      use_keras_compile_fit=FLAGS.use_keras_compile_fit,
      custom_callbacks=custom_callbacks)
389

390
  if FLAGS.model_export_path:
391
392
393
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
394
    model_saving_utils.export_bert_model(
395
396
397
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
398
399
  return trained_model

400

401
402
def custom_main(custom_callbacks=None):
  """Run classification.
403

404
405
406
  Args:
    custom_callbacks: list of tf.keras.Callbacks passed to training loop.
  """
Le Hou's avatar
Le Hou committed
407
408
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)

409
410
411
412
413
414
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

415
416
417
418
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
419
  max_seq_length = input_meta_data['max_seq_length']
Hongkun Yu's avatar
Hongkun Yu committed
420
  train_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
421
      FLAGS.train_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
422
423
424
425
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
426
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
427
428
429
430
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

431
432
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_bert(strategy, input_meta_data, bert_config, train_input_fn,
433
434
435
436
437
           eval_input_fn, custom_callbacks=custom_callbacks)


def main(_):
  custom_main(custom_callbacks=None)
438
439
440
441
442


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
443
  flags.mark_flag_as_required('model_dir')
444
  app.run(main)