model_training_utils.py 23.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from tensorflow.python.util import deprecation
Zongwei Zhou's avatar
Zongwei Zhou committed
28
from official.staging.training import grad_utils
29
from official.utils.misc import distribution_utils
30

31
32
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
33

34

35
36
37
38
39
40
41
42
43
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
44
45
  """Saves model to with provided checkpoint prefix."""

46
47
48
49
50
51
52
53
54
55
56
57
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
58
59
60
  return


61
62
63
64
65
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
70
71
72
  return iterator


73
74
75
76
77
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


78
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
79
  """Calculates steps to run on device."""
80
81
82
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
83
84
85
86
87
88
89
90
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


91
def write_txt_summary(training_summary, summary_dir):
92
  """Writes a summary text file to record stats."""
Chen Chen's avatar
Chen Chen committed
93
94
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
95
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
96
97
98
99
100
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


101
102
@deprecation.deprecated(
    None, 'This function is deprecated. Please use Keras compile/fit instead.')
103
104
105
106
107
108
109
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
110
    scale_loss=True,
111
112
113
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
Tianqi Liu's avatar
Tianqi Liu committed
114
    num_eval_per_epoch=1,
115
    steps_per_loop=None,
116
117
118
119
120
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
121
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
122
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
123
124
125
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
Chen Chen's avatar
Chen Chen committed
126
127
    post_allreduce_callbacks=None,
    train_summary_interval=0):
128
129
130
131
132
133
134
135
136
137
138
139
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
140
141
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
142
143
144
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
145
146
147
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
Tianqi Liu's avatar
Tianqi Liu committed
148
      num_eval_per_epoch: Number of evaluations per epoch.
149
150
151
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
152
153
154
155
156
157
158
159
160
161
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
162
      custom_callbacks: A list of Keras Callbacks objects to run during
163
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
164
165
        `on_epoch_begin()`, `on_epoch_end()` methods are invoked during
        training.  Note that some metrics may be missing from `logs`.
166
167
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
168
169
170
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
Tianqi Liu's avatar
Tianqi Liu committed
171
172
        checkpint's name is {sub_model_export_name}.ckpt; if None, `sub_model`
        will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
173
174
175
176
177
178
179
180
181
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
Tianqi Liu's avatar
Tianqi Liu committed
182
183
184
185
        invoked in the list order and before gradients are allreduced. With
        mixed precision training, the pre_allreduce_allbacks will be applied on
        scaled_gradients. Default is no callbacks. Only used when
        explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
186
187
188
189
190
191
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
Chen Chen's avatar
Chen Chen committed
192
193
      train_summary_interval: Step interval for training summaries. If the value
        is a negative number, then training summaries are not enabled.
194
195
196
197
198
199
200
201

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
202
203
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
204
205
206
207
208
209
210
211
212
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
Tianqi Liu's avatar
Tianqi Liu committed
213
214

  steps_between_evals = int(steps_per_epoch / num_eval_per_epoch)
215
216
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
217
                     '`steps_per_epoch` and `train_input_fn` are required '
218
                     'parameters.')
219
220
221
222
  if not steps_per_loop:
    if tf.config.list_logical_devices('TPU'):
      # One can't fully utilize a TPU with steps_per_loop=1, so in this case
      # default users to a more useful value.
Tianqi Liu's avatar
Tianqi Liu committed
223
      steps_per_loop = min(1000, steps_between_evals)
224
225
226
227
    else:
      steps_per_loop = 1
    logging.info('steps_per_loop not specified. Using steps_per_loop=%d',
                 steps_per_loop)
Tianqi Liu's avatar
Tianqi Liu committed
228
  if steps_per_loop > steps_between_evals:
229
    logging.warning(
230
        'steps_per_loop: %d is specified to be greater than '
Tianqi Liu's avatar
Tianqi Liu committed
231
232
233
        ' steps_between_evals: %d, we will use steps_between_evals as'
        ' steps_per_loop.', steps_per_loop, steps_between_evals)
    steps_per_loop = steps_between_evals
234
235
  assert tf.executing_eagerly()

236
237
238
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
239
          'TPUStrategy should not run eagerly as it heavily relies on graph'
240
241
          ' optimization for the distributed system.')

242
  if eval_input_fn and eval_steps is None:
243
    raise ValueError(
244
        '`eval_step` is required when `eval_input_fn ` is not none.')
245
246
247
248
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

249
250
  callback_list = tf.keras.callbacks.CallbackList(custom_callbacks)

251
  total_training_steps = steps_per_epoch * epochs
252
  train_iterator = _get_input_iterator(train_input_fn, strategy)
Tianqi Liu's avatar
Tianqi Liu committed
253
  eval_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
254
255
256
257
258
259
260
261

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
262
263
264
265
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

266
267
268
269
270
271
272
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
273
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
274
275
      logging.info('Loading from checkpoint file completed')

Tianqi Liu's avatar
Tianqi Liu committed
276
    train_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
277
278
279
280
281
282
283
284
285
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
286
287
288
289
290
291
292
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
293
    eval_summary_writer = tf.summary.create_file_writer(
294
        os.path.join(summary_dir, 'eval'))
Chen Chen's avatar
Chen Chen committed
295
296
    last_summary_step = 0
    if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
297
298
299
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
300
          os.path.join(summary_dir, 'train'))
301
    else:
Chen Chen's avatar
Chen Chen committed
302
      train_summary_writer = tf.summary.create_noop_writer()
303
304
305
306
307
308
309
310
311
312
313

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
314
315
316
317
318
319
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
320
321
322
323
324
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
325
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
326
327
328
329
330
331
332
333
334
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
335
      # For reporting, the metric takes the mean of losses.
336
      train_loss_metric.update_state(raw_loss)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
357
        strategy.run(_replicated_step, args=(next(iterator),))
358

359
360
    def train_single_step(iterator):
      """Performs a distributed training step.
361

362
363
      Args:
        iterator: the distributed iterator of training datasets.
364

365
366
367
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
368
      strategy.run(_replicated_step, args=(next(iterator),))
369

370
371
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
372

373
374
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
375

376
377
378
379
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
380
        return model_outputs, labels
381

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
382
383
384
385
386
387
      outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      outputs)
      labels = tf.nest.map_structure(strategy.experimental_local_results,
                                     labels)
      return outputs, labels
388
389
390
391
392
393

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
394
395
396
397
398
399
400
401
402
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
403
404
405
406
407
408
      # The last batch of the evaluation is often smaller than previous ones.
      # Moreover, in some distributed pieces it might even be empty. Therefore,
      # different from the way training_loss is calculated, it is needed to
      # gather all the logits and labels here to calculate the evaluation loss
      # outside.
      loss_list, loss_weights = list(), list()
409
      for _ in range(eval_steps):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
410
411
412
413
414
415
416
417
418
419
420
421
        outputs, labels = test_step(test_iterator)
        for cur_logits, cur_labels in zip(outputs, labels):
          # This is to handle cases when cur_labels is not a single tensor,
          # but a dict of tensors.
          cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
          if cur_weight != 0:
            loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
            loss_weights.append(cur_weight)
      # The sample_weights are the actual number of examples in each batch,
      # a summation of numbers of examples in each replica if using
      # distributed training.
      eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
422

423
      logs = {}
424
      with eval_summary_writer.as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
425
        for metric in [eval_loss_metric] + eval_metrics + model.metrics:
426
          metric_value = _float_metric_value(metric)
427
          logs[metric.name] = metric_value
428
429
430
431
432
433
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

434
      return logs
435
436

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
437
438
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
439
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
440
441
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
442

443
444
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
Tianqi Liu's avatar
Tianqi Liu committed
445
446
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
447
448
449
450
451
452
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

Tianqi Liu's avatar
Tianqi Liu committed
453
    logs = {}
454
    while current_step < total_training_steps:
455
      if current_step % steps_per_epoch == 0:
Tianqi Liu's avatar
Tianqi Liu committed
456
457
        callback_list.on_epoch_begin(
            int(current_step / steps_per_epoch) + 1)
458

459
460
461
462
463
464
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

465
      callback_list.on_batch_begin(current_step)
466
      # Runs several steps in the host while loop.
Tianqi Liu's avatar
Tianqi Liu committed
467
      steps = steps_to_run(current_step, steps_between_evals, steps_per_loop)
468

469
      if tf.config.list_physical_devices('GPU'):
470
471
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
472
473
        for _ in range(steps):
          train_single_step(train_iterator)
474
475
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
Tianqi Liu's avatar
Tianqi Liu committed
476
        train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
477
      train_loss = _float_metric_value(train_loss_metric)
478
479
480
481
482
483
      current_step += steps

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

Chen Chen's avatar
Chen Chen committed
484
485
486
487
488
489
490
      if current_step >= last_summary_step + train_summary_interval:
        summary_writer = train_summary_writer
        last_summary_step = current_step
      else:
        summary_writer = tf.summary.create_noop_writer()

      with summary_writer.as_default():
491
492
493
494
495
        if callable(optimizer.learning_rate):
          tf.summary.scalar(
              'learning_rate',
              optimizer.learning_rate(current_step),
              step=current_step)
Tianqi Liu's avatar
Tianqi Liu committed
496
        tf.summary.scalar(train_loss_metric.name, train_loss, step=current_step)
Chen Chen's avatar
Chen Chen committed
497
498
499
500
501
        for metric in train_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          training_status += '  %s = %f' % (metric.name, metric_value)
          tf.summary.scalar(metric.name, metric_value, step=current_step)
        summary_writer.flush()
502
503
      logging.info(training_status)

Tianqi Liu's avatar
Tianqi Liu committed
504
505
506
507
508
      # If no need for evaluation, we only call on_batch_end with train_loss,
      # this is to ensure we get granular global_step/sec on Tensorboard.
      if current_step % steps_between_evals:
        callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
      else:
509
510
511
512
513
514
515
516
517
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
518
        if current_step < total_training_steps:
519
          _save_checkpoint(strategy, checkpoint, model_dir,
520
                           checkpoint_name.format(step=current_step))
521
522
          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
523
524
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
525
            # Re-initialize evaluation metric.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
526
            eval_loss_metric.reset_states()
527
528
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
Tianqi Liu's avatar
Tianqi Liu committed
529
530
531
532
        # We add train_loss here rather than call on_batch_end twice to make
        # sure that no duplicated values are generated.
        logs['loss'] = train_loss
        callback_list.on_batch_end(current_step - 1, logs)
533

Tianqi Liu's avatar
Tianqi Liu committed
534
535
536
537
      # Calls on_epoch_end after each real epoch ends to prevent mis-calculation
      # of training steps.
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
538

Chen Chen's avatar
Chen Chen committed
539
    if sub_model_export_name:
540
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
541
                       '%s.ckpt' % sub_model_export_name)
542

543
544
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
545
546
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
547
548
549
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))
    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
550
551
552
553
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
554
555
    for metric in model.metrics:
      training_summary[metric.name] = _float_metric_value(metric)
556
557
558
559
560
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
561

562
    write_txt_summary(training_summary, summary_dir)
563

564
565
566
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

567
    return model