xlnet_modeling.py 45.4 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras layers of XLNet model in TF 2.0."""

import copy

import tensorflow as tf
Allen Wang's avatar
Allen Wang committed
20
21

from official.nlp.modeling import networks
Hongkun Yu's avatar
Hongkun Yu committed
22
from official.nlp.xlnet import data_utils
Hongkun Yu's avatar
Hongkun Yu committed
23
24


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
26
def gelu(x):
  return tf.keras.activations.gelu(x, approximate=True)
Hongkun Yu's avatar
Hongkun Yu committed
27
28


Allen Wang's avatar
Allen Wang committed
29
30
31
32
33
34
35
36
37
38
39
40
def _get_initializer(flags):
  """Get variable initializer."""
  if flags.init_method == "uniform":
    initializer = tf.keras.initializers.RandomUniform(
        minval=-flags.init_range, maxval=flags.init_range)
  elif flags.init_method == "normal":
    initializer = tf.keras.initializers.RandomNormal(stddev=flags.init_std)
  else:
    raise ValueError("Initializer {} not supported".format(flags.init_method))
  return initializer


Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def rel_shift(x, klen=-1):
  """Performs relative shift to form the relative attention score."""
  x_size = tf.shape(x)

  x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
  x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
  x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
  x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])

  return x


def _create_mask(qlen, mlen, dtype=tf.float32, same_length=False):
  """Creates attention mask when single-side context allowed only."""
  attn_mask = tf.ones([qlen, qlen], dtype=dtype)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
  mask_u = tf.linalg.band_part(attn_mask, 0, -1)
  mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
Hongkun Yu's avatar
Hongkun Yu committed
58
59
60
  attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
  ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
  if same_length:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
    mask_l = tf.linalg.band_part(attn_mask, -1, 0)
Hongkun Yu's avatar
Hongkun Yu committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)

  return ret


def _cache_mem(curr_out, prev_mem, mem_len, reuse_len=None):
  """cache hidden states into memory."""

  if mem_len is None or mem_len == 0:
    return None
  else:
    if reuse_len is not None and reuse_len > 0:
      curr_out = curr_out[:reuse_len]

    if prev_mem is None:
      new_mem = curr_out[-mem_len:]
    else:
      new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]

  return tf.keras.backend.stop_gradient(new_mem)


def is_special_none_tensor(tensor):
  """Checks if a tensor is a special None Tensor."""
  return tensor.shape.ndims == 0 and tensor.dtype == tf.int32


Allen Wang's avatar
Allen Wang committed
89
@tf.keras.utils.register_keras_serializable(package="Text")
Allen Wang's avatar
Allen Wang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
class RelativePositionEncoding(tf.keras.layers.Layer):
  """Creates a relative positional encoding.

  This layer creates a relative positional encoding as described in
  "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
  (https://arxiv.org/abs/1901.02860).

  Rather than an absolute position embedding as in Transformer, this
  formulation represents position as the relative distance between tokens using
  sinusoidal positional embeddings.

  Note: This layer is currently experimental.

  Attributes:
    hidden_size: The dimensionality of the input embeddings.
  """

  def __init__(self, hidden_size, **kwargs):
    super(RelativePositionEncoding, self).__init__(**kwargs)
    self._hidden_size = hidden_size
    self._inv_freq = 1.0 / (10000.0**(
        tf.range(0, self._hidden_size, 2.0) / self._hidden_size))

  def call(self, pos_seq, batch_size=None):
    """Implements call() for the layer.

    Arguments:
      pos_seq: A 1-D `Tensor`
      batch_size: The optionally provided batch size that tiles the relative
        positional encoding.

    Returns:
      The relative positional encoding of shape:
        [len(pos_seq), batch_size, hidden_size] if batch_size is provided, else
        [len(pos_seq), 1, hidden_size].
    """
Allen Wang's avatar
Allen Wang committed
126
    sinusoid_input = tf.einsum("i,d->id", pos_seq, self._inv_freq)
Allen Wang's avatar
Allen Wang committed
127
    pos_emb = tf.concat([tf.sin(sinusoid_input), tf.cos(sinusoid_input)], -1)
Hongkun Yu's avatar
Hongkun Yu committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    pos_emb = pos_emb[:, None, :]

    if batch_size is not None:
      pos_emb = tf.tile(pos_emb, [1, batch_size, 1])
    return pos_emb


class RelativeAttention(tf.keras.layers.Layer):
  """Core calculations for relative attention."""

  def __init__(self, dropout_att, scale):
    super(RelativeAttention, self).__init__()
    self.scale = scale
    self.dropout_att = dropout_att

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""

    self.attention_probs_dropout = tf.keras.layers.Dropout(
        rate=self.dropout_att)

    super(RelativeAttention, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
151
152
  def call(self, q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat,
           r_w_bias, r_r_bias, r_s_bias, attn_mask):
Hongkun Yu's avatar
Hongkun Yu committed
153
154
155
    """Implements call() for the layer."""

    # content based attention score
Allen Wang's avatar
Allen Wang committed
156
    ac = tf.einsum("ibnd,jbnd->ijbn", q_head + r_w_bias, k_head_h)
Hongkun Yu's avatar
Hongkun Yu committed
157
158

    # position based attention score
Allen Wang's avatar
Allen Wang committed
159
    bd = tf.einsum("ibnd,jbnd->ijbn", q_head + r_r_bias, k_head_r)
Hongkun Yu's avatar
Hongkun Yu committed
160
161
162
163
164
165
    bd = rel_shift(bd, klen=tf.shape(ac)[1])

    # segment-based attention score
    if seg_mat is None:
      ef = 0
    else:
Allen Wang's avatar
Allen Wang committed
166
      ef = tf.einsum("ibnd,snd->isbn", q_head + r_s_bias, seg_embed)
Hongkun Yu's avatar
Hongkun Yu committed
167
168
169
170
171
      tgt_shape = tf.shape(bd)
      ef = tf.where(
          tf.broadcast_to(tf.expand_dims(seg_mat, 3), tgt_shape),
          tf.broadcast_to(ef[:, 1:, :, :], tgt_shape),
          tf.broadcast_to(ef[:, :1, :, :], tgt_shape))
Hongkun Yu's avatar
Hongkun Yu committed
172
173
174
175
176
177
178
179
180
181
182

    # merges attention scores and performs masking
    attn_score = (ac + bd + ef) * self.scale
    if attn_mask is not None:
      attn_score = attn_score - 1e30 * attn_mask

    # attention probability
    attn_prob = tf.nn.softmax(attn_score, 1)
    attn_prob = self.attention_probs_dropout(attn_prob)

    # attention output
Allen Wang's avatar
Allen Wang committed
183
    attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h)
Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
187
188
189
190

    return attn_vec


class PositionwiseFF(tf.keras.layers.Layer):
  """Positionwise feed-forward layer."""

Hongkun Yu's avatar
Hongkun Yu committed
191
192
  def __init__(self, d_model, d_inner, dropout, kernel_initializer,
               activation_type, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
193
194
195
196
197
198
199
200
201
    super(PositionwiseFF, self).__init__(**kwargs)
    self.d_model = d_model
    self.d_inner = d_inner
    self.dropout = dropout
    self.activation_type = activation_type
    self.kernel_initializer = kernel_initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Allen Wang's avatar
Allen Wang committed
202
    if self.activation_type == "relu":
Hongkun Yu's avatar
Hongkun Yu committed
203
      activation = tf.nn.relu
Allen Wang's avatar
Allen Wang committed
204
    elif self.activation_type == "gelu":
Hongkun Yu's avatar
Hongkun Yu committed
205
206
      activation = gelu
    else:
Allen Wang's avatar
Allen Wang committed
207
      raise (ValueError("Unsupported activation type {}".format(
Hongkun Yu's avatar
Hongkun Yu committed
208
209
210
211
212
213
          self.activation_type)))
    self.inner_projection_layer = (
        tf.keras.layers.Dense(
            units=self.d_inner,
            activation=activation,
            kernel_initializer=self.kernel_initializer,
Allen Wang's avatar
Allen Wang committed
214
            name="layer_1"))
Hongkun Yu's avatar
Hongkun Yu committed
215
216
217
218
    self.output_projection_layer = (
        tf.keras.layers.Dense(
            units=self.d_model,
            kernel_initializer=self.kernel_initializer,
Allen Wang's avatar
Allen Wang committed
219
            name="layer_2"))
Hongkun Yu's avatar
Hongkun Yu committed
220
    self.output_dropout = tf.keras.layers.Dropout(
Allen Wang's avatar
Allen Wang committed
221
        rate=self.dropout, name="drop_2")
Hongkun Yu's avatar
Hongkun Yu committed
222
223
    self.output_layer_norm = (
        tf.keras.layers.LayerNormalization(
Allen Wang's avatar
Allen Wang committed
224
            name="LayerNorm", axis=-1, epsilon=1e-12))
Hongkun Yu's avatar
Hongkun Yu committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    super(PositionwiseFF, self).build(unused_input_shapes)

  def call(self, inp):
    """Implements call() for the layer."""

    output = self.inner_projection_layer(inp)
    output = self.output_projection_layer(output)
    output = self.output_dropout(output)
    output = self.output_layer_norm(output + inp)
    return output


class EmbeddingLookup(tf.keras.layers.Layer):
  """Looks up words embeddings for id tensor."""

Hongkun Yu's avatar
Hongkun Yu committed
240
  def __init__(self, n_token, d_embed, initializer, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
241
242
243
244
245
246
247
248
    super(EmbeddingLookup, self).__init__(**kwargs)
    self.n_token = n_token
    self.d_embed = d_embed
    self.initializer = initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.lookup_table = self.add_weight(
Allen Wang's avatar
Allen Wang committed
249
        "lookup_table",
Hongkun Yu's avatar
Hongkun Yu committed
250
251
252
253
254
255
256
        shape=[self.n_token, self.d_embed],
        initializer=self.initializer,
        dtype=self.dtype)

    super(EmbeddingLookup, self).build(unused_input_shapes)

  def call(self, inputs):
Hongkun Yu's avatar
Hongkun Yu committed
257
    return tf.nn.embedding_lookup(self.lookup_table, inputs)
Hongkun Yu's avatar
Hongkun Yu committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274


class RelativeMultiheadAttention(tf.keras.layers.Layer):
  """Multi-head attention with relative embedding."""

  def __init__(self, d_model, n_head, d_head, dropout, dropout_att,
               kernel_initializer, **kwargs):
    super(RelativeMultiheadAttention, self).__init__(**kwargs)
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.dropout = dropout
    self.dropout_att = dropout_att
    self.initializer = kernel_initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
275
    self.scale = 1.0 / (self.d_head**0.5)
Hongkun Yu's avatar
Hongkun Yu committed
276
277

    self.output_layer_norm = tf.keras.layers.LayerNormalization(
Allen Wang's avatar
Allen Wang committed
278
        name="LayerNorm", axis=-1, epsilon=1e-12)
Hongkun Yu's avatar
Hongkun Yu committed
279
280

    self.kh_projection_layer = self.add_weight(
Allen Wang's avatar
Allen Wang committed
281
        "k/kernel",
Hongkun Yu's avatar
Hongkun Yu committed
282
283
284
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.vh_projection_layer = self.add_weight(
Allen Wang's avatar
Allen Wang committed
285
        "v/kernel",
Hongkun Yu's avatar
Hongkun Yu committed
286
287
288
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.kr_projection_layer = self.add_weight(
Allen Wang's avatar
Allen Wang committed
289
        "r/kernel",
Hongkun Yu's avatar
Hongkun Yu committed
290
291
292
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.qh_projection_layer = self.add_weight(
Allen Wang's avatar
Allen Wang committed
293
        "q/kernel",
Hongkun Yu's avatar
Hongkun Yu committed
294
295
296
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)

297
    self.relative_attention_layer = RelativeAttention(
Hongkun Yu's avatar
Hongkun Yu committed
298
299
300
        dropout_att=self.dropout_att, scale=self.scale)

    self.proj_o = self.add_weight(
Allen Wang's avatar
Allen Wang committed
301
        "o/kernel",
Hongkun Yu's avatar
Hongkun Yu committed
302
303
304
305
306
307
308
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)

    self.attention_dropout = tf.keras.layers.Dropout(rate=self.dropout)

    super(RelativeMultiheadAttention, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
309
310
  def call(self, h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed,
           attn_mask_h, attn_mask_g, mems, target_mapping):
Hongkun Yu's avatar
Hongkun Yu committed
311
312
313
314
315
316
317
318
    """Implements call() for the layer."""

    if mems is not None and mems.shape.ndims > 1:
      cat = tf.concat([mems, h], 0)
    else:
      cat = h

    # content heads
Allen Wang's avatar
Allen Wang committed
319
320
321
    q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.qh_projection_layer)
    k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.kh_projection_layer)
    v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.vh_projection_layer)
Hongkun Yu's avatar
Hongkun Yu committed
322
323

    # positional heads
Allen Wang's avatar
Allen Wang committed
324
    k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.kr_projection_layer)
Hongkun Yu's avatar
Hongkun Yu committed
325
326

    # core attention ops
Hongkun Yu's avatar
Hongkun Yu committed
327
328
329
330
    attn_vec_h = self.relative_attention_layer(q_head_h, k_head_h, v_head_h,
                                               k_head_r, seg_embed, seg_mat,
                                               r_w_bias, r_r_bias, r_s_bias,
                                               attn_mask_h)
Hongkun Yu's avatar
Hongkun Yu committed
331
332

    # post processing
Allen Wang's avatar
Allen Wang committed
333
    output_h = tf.einsum("ibnd,hnd->ibh", attn_vec_h, self.proj_o)
334
335
    output_h = self.attention_dropout(output_h)
    output_h = self.output_layer_norm(output_h + h)
Hongkun Yu's avatar
Hongkun Yu committed
336

337
338
339
    output_g = None
    if g is not None:  # enable two-stream attention
      # g-stream
Allen Wang's avatar
Allen Wang committed
340
      q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.qh_projection_layer)
341
      if target_mapping is not None:
Allen Wang's avatar
Allen Wang committed
342
        q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
343
344
345
346
        attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
                                                   k_head_r, seg_embed, seg_mat,
                                                   r_w_bias, r_r_bias, r_s_bias,
                                                   attn_mask_g)
Allen Wang's avatar
Allen Wang committed
347
        attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
348

349
      else:
Hongkun Yu's avatar
Hongkun Yu committed
350
351
352
353
        attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
                                                   k_head_r, seg_embed, seg_mat,
                                                   r_w_bias, r_r_bias, r_s_bias,
                                                   attn_mask_g)
Hongkun Yu's avatar
Hongkun Yu committed
354

355
      # post processing
Allen Wang's avatar
Allen Wang committed
356
      output_g = tf.einsum("ibnd,hnd->ibh", attn_vec_g, self.proj_o)
357
358
359
360
      output_g = self.attention_dropout(output_g)
      output_g = self.output_layer_norm(output_g + g)

    return (output_h, output_g)
Hongkun Yu's avatar
Hongkun Yu committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384


class TransformerXLModel(tf.keras.layers.Layer):
  """Defines a Transformer-XL computation graph with additional support for XLNet."""

  def __init__(self,
               n_token,
               n_layer,
               d_model,
               n_head,
               d_head,
               d_inner,
               dropout,
               dropout_att,
               attn_type,
               bi_data,
               is_training,
               initializer,
               mem_len=None,
               same_length=False,
               clamp_len=-1,
               untie_r=False,
               use_tpu=True,
               reuse_len=None,
Allen Wang's avatar
Allen Wang committed
385
               ff_activation="relu",
Hongkun Yu's avatar
Hongkun Yu committed
386
               use_cls_mask=False,
Hongkun Yu's avatar
Hongkun Yu committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
               **kwargs):
    """Initializes TransformerXLModel.

    Args:
      n_token: int, the number of tokens in vocabulary.
      n_layer: int, the number of layers.
      d_model: int, the hidden size.
      n_head: int, the number of attention heads.
      d_head: int, the dimension size of each attention head.
      d_inner: int, the hidden size in feed-forward layers.
      dropout: float, dropout rate.
      dropout_att: float, dropout rate on attention probabilities.
      attn_type: str, "uni" or "bi".
      bi_data: bool, whether to use bidirectional input pipeline. Usually set to
        True during pretraining and False during finetuning.
      is_training: bool, whether in training mode.
      initializer: A tf initializer.
      mem_len: int, the number of tokens to cache.
      same_length: bool, whether to use the same attention length for each
        token.
      clamp_len: int, clamp all relative distances larger than clamp_len. -1
        means no clamping.
      untie_r: bool, whether to untie the biases in attention.
      use_tpu: bool, whether TPUs are used.
      reuse_len: int, the number of tokens in the currect batch to be cached and
        reused in the future.
      ff_activation: str, "relu" or "gelu".
Hongkun Yu's avatar
Hongkun Yu committed
414
      use_cls_mask: bool, whether to introduce cls mask.
Hongkun Yu's avatar
Hongkun Yu committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
      **kwargs: Other parameters.
    """

    super(TransformerXLModel, self).__init__(**kwargs)

    self.n_token = n_token
    self.initializer = initializer
    self.attn_type = attn_type
    self.n_layer = n_layer
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.d_inner = d_inner
    self.ff_activation = ff_activation
    self.untie_r = untie_r
    self.use_tpu = use_tpu
    self.dropout = dropout
    self.dropout_att = dropout_att

    self.mem_len = mem_len
    self.reuse_len = reuse_len
    self.bi_data = bi_data
    self.clamp_len = clamp_len
    self.same_length = same_length
Hongkun Yu's avatar
Hongkun Yu committed
439
    self.use_cls_mask = use_cls_mask
Hongkun Yu's avatar
Hongkun Yu committed
440
441
442

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
443
    self.tf_float = tf.float32
Hongkun Yu's avatar
Hongkun Yu committed
444

Hongkun Yu's avatar
Hongkun Yu committed
445
446
447
448
449
    self.embedding_lookup = EmbeddingLookup(
        n_token=self.n_token,
        d_embed=self.d_model,
        initializer=self.initializer,
        dtype=self.tf_float,
Allen Wang's avatar
Allen Wang committed
450
        name="word_embedding")
Hongkun Yu's avatar
Hongkun Yu committed
451
452
453
454
455
456
457

    self.h_dropout = tf.keras.layers.Dropout(rate=self.dropout)
    self.g_dropout = tf.keras.layers.Dropout(rate=self.dropout)

    if self.untie_r:
      self.r_w_bias = (
          self.add_weight(
Allen Wang's avatar
Allen Wang committed
458
              "r_w_bias",
Hongkun Yu's avatar
Hongkun Yu committed
459
460
461
462
463
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_r_bias = (
          self.add_weight(
Allen Wang's avatar
Allen Wang committed
464
              "r_r_bias",
Hongkun Yu's avatar
Hongkun Yu committed
465
466
467
468
469
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_s_bias = (
          self.add_weight(
Allen Wang's avatar
Allen Wang committed
470
              "r_s_bias",
Hongkun Yu's avatar
Hongkun Yu committed
471
472
473
474
475
476
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
    else:
      self.r_w_bias = (
          self.add_weight(
Allen Wang's avatar
Allen Wang committed
477
              "r_w_bias",
Hongkun Yu's avatar
Hongkun Yu committed
478
479
480
481
482
              shape=[self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_r_bias = (
          self.add_weight(
Allen Wang's avatar
Allen Wang committed
483
              "r_r_bias",
Hongkun Yu's avatar
Hongkun Yu committed
484
485
486
487
488
              shape=[self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_s_bias = (
          self.add_weight(
Allen Wang's avatar
Allen Wang committed
489
              "r_s_bias", [self.n_head, self.d_head],
Hongkun Yu's avatar
Hongkun Yu committed
490
491
492
493
              dtype=self.tf_float,
              initializer=self.initializer))

    self.seg_embed = self.add_weight(
Allen Wang's avatar
Allen Wang committed
494
        "seg_embed", [self.n_layer, 2, self.n_head, self.d_head],
Hongkun Yu's avatar
Hongkun Yu committed
495
496
        dtype=self.tf_float,
        initializer=self.initializer)
Hongkun Yu's avatar
Hongkun Yu committed
497

Hongkun Yu's avatar
Hongkun Yu committed
498
    self.mask_emb = self.add_weight(
Allen Wang's avatar
Allen Wang committed
499
        "mask_emb/mask_emb", shape=[1, 1, self.d_model], dtype=self.tf_float)
Hongkun Yu's avatar
Hongkun Yu committed
500
501

    self.emb_dropout = tf.keras.layers.Dropout(rate=self.dropout)
Allen Wang's avatar
Allen Wang committed
502
503
    self.fwd_position_embedding = RelativePositionEncoding(self.d_model)
    self.bwd_position_embedding = RelativePositionEncoding(self.d_model)
Hongkun Yu's avatar
Hongkun Yu committed
504
505
506
507
508
509
510
511
512
513
514
515

    self.rel_multihead_layers = []
    self.h_positionwise_ffn_layers = []
    for i in range(self.n_layer):
      self.rel_multihead_layers.append(
          RelativeMultiheadAttention(
              d_model=self.d_model,
              dropout=self.dropout,
              n_head=self.n_head,
              d_head=self.d_head,
              dropout_att=self.dropout_att,
              kernel_initializer=self.initializer,
Allen Wang's avatar
Allen Wang committed
516
              name="layer_%d/rel_attn" % (i)))
Hongkun Yu's avatar
Hongkun Yu committed
517
518
519
520
521
522
      self.h_positionwise_ffn_layers.append(
          PositionwiseFF(
              d_model=self.d_model,
              d_inner=self.d_inner,
              dropout=self.dropout,
              kernel_initializer=self.initializer,
Hongkun Yu's avatar
Hongkun Yu committed
523
              activation_type=self.ff_activation,
Allen Wang's avatar
Allen Wang committed
524
              name="layer_%d/ff" % (i)))
Hongkun Yu's avatar
Hongkun Yu committed
525
526
527
528
529
530
531
532
533
534
535
536

    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout)

    super(TransformerXLModel, self).build(unused_input_shapes)

  def __call__(self,
               inp_k,
               seg_id=None,
               input_mask=None,
               mems=None,
               perm_mask=None,
               target_mapping=None,
537
538
               inp_q=None,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
539
540
    # Uses dict to feed inputs into call() in order to keep mems as a python
    # list.
Hongkun Yu's avatar
Hongkun Yu committed
541
    inputs = {
Allen Wang's avatar
Allen Wang committed
542
543
544
545
546
547
548
        "inp_k": inp_k,
        "seg_id": seg_id,
        "input_mask": input_mask,
        "mems": mems,
        "perm_mask": perm_mask,
        "target_mapping": target_mapping,
        "inp_q": inp_q
Hongkun Yu's avatar
Hongkun Yu committed
549
    }
550
    return super(TransformerXLModel, self).__call__(inputs, **kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
551
552
553

  def call(self, inputs):
    """Implements call() for the layer."""
Allen Wang's avatar
Allen Wang committed
554
555
556
557
558
559
560
    inp_k = inputs["inp_k"]
    seg_id = inputs["seg_id"]
    input_mask = inputs["input_mask"]
    mems = inputs["mems"]
    perm_mask = inputs["perm_mask"]
    target_mapping = inputs["target_mapping"]
    inp_q = inputs["inp_q"]
Hongkun Yu's avatar
Hongkun Yu committed
561
562
563
564
565
566
567
568
569
570
571
572

    new_mems = []

    bsz = tf.shape(inp_k)[1]

    qlen = inp_k.shape.as_list()[0]

    mlen = mems[0].shape.as_list()[0] if mems is not None else 0
    klen = mlen + qlen

    ##### Attention mask
    # causal attention mask
Allen Wang's avatar
Allen Wang committed
573
    if self.attn_type == "uni":
Hongkun Yu's avatar
Hongkun Yu committed
574
575
576
      attn_mask = _create_mask(qlen, mlen, self.tf_float, self.same_length)
      # pylint: enable=protected-access
      attn_mask = attn_mask[:, :, None, None]
Allen Wang's avatar
Allen Wang committed
577
    elif self.attn_type == "bi":
Hongkun Yu's avatar
Hongkun Yu committed
578
579
      attn_mask = None
    else:
Allen Wang's avatar
Allen Wang committed
580
      raise ValueError("Unsupported attention type: {}".format(self.attn_type))
Hongkun Yu's avatar
Hongkun Yu committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    # data mask: input mask & perm mask
    if input_mask is not None and perm_mask is not None:
      data_mask = input_mask[None] + perm_mask

    elif input_mask is not None and perm_mask is None:
      data_mask = input_mask[None]
    elif input_mask is None and perm_mask is not None:
      data_mask = perm_mask
    else:
      data_mask = None

    if data_mask is not None:
      # all mems can be attended to
      mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, bsz],
                           dtype=self.tf_float)
      data_mask = tf.concat([mems_mask, data_mask], 1)
      if attn_mask is None:
        attn_mask = data_mask[:, :, :, None]
      else:
        attn_mask += data_mask[:, :, :, None]

    if attn_mask is not None:
      attn_mask = tf.cast(attn_mask > 0, dtype=self.tf_float)

    if attn_mask is not None:
      non_tgt_mask = -tf.eye(qlen, dtype=self.tf_float)
Hongkun Yu's avatar
Hongkun Yu committed
608
609
610
611
      non_tgt_mask = tf.concat(
          [tf.zeros([qlen, mlen], dtype=self.tf_float), non_tgt_mask], axis=-1)
      non_tgt_mask = tf.cast(
          (attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=self.tf_float)
Hongkun Yu's avatar
Hongkun Yu committed
612
613
614
    else:
      non_tgt_mask = None

Hongkun Yu's avatar
Hongkun Yu committed
615
    word_emb_k = self.embedding_lookup(inp_k)
Hongkun Yu's avatar
Hongkun Yu committed
616
617
618
619
620
621
622
623
624
625

    if inp_q is not None:
      if target_mapping is not None:
        word_emb_q = tf.tile(self.mask_emb,
                             [tf.shape(target_mapping)[0], bsz, 1])
      else:
        inp_q_ext = inp_q[:, :, None]
        word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k

    output_h = self.h_dropout(word_emb_k)
626
    output_g = None
Hongkun Yu's avatar
Hongkun Yu committed
627
628
629
630
631
632
633
634
635
636
    if inp_q is not None:
      output_g = self.g_dropout(word_emb_q)

    ##### Segment embedding
    if seg_id is not None:

      # Convert `seg_id` to one-hot `seg_mat`

      mem_pad = tf.zeros([mlen, bsz], dtype=tf.int32)

Hongkun Yu's avatar
Hongkun Yu committed
637
      cat_id = tf.concat([mem_pad, seg_id], 0)
Hongkun Yu's avatar
Hongkun Yu committed
638

Hongkun Yu's avatar
Hongkun Yu committed
639
640
641
642
643
644
645
646
647
648
      if self.use_cls_mask:
        # `1` indicates not in the same segment [qlen x klen x bsz]
        # seg_id: [qlen x bsz] & cat_id: [klen x bsz]
        cls_mat = tf.logical_or(
            tf.equal(seg_id, tf.constant([data_utils.SEG_ID_CLS]))[:, None],
            tf.equal(cat_id, tf.constant([data_utils.SEG_ID_CLS]))[None, :])
        seg_mat = tf.equal(seg_id[:, None], cat_id[None, :])
        seg_mat = tf.logical_or(cls_mat, seg_mat)
      else:
        seg_mat = tf.logical_not(tf.equal(seg_id[:, None], cat_id[None, :]))
Hongkun Yu's avatar
Hongkun Yu committed
649
650
651
652
653
654
655
656
    else:
      seg_mat = None

    dtype = self.tf_float
    freq_seq = tf.range(0, self.d_model, 2.0)
    if dtype is not None and dtype != tf.float32:
      freq_seq = tf.cast(freq_seq, dtype=self.dtype)

Allen Wang's avatar
Allen Wang committed
657
    if self.attn_type == "bi":
Hongkun Yu's avatar
Hongkun Yu committed
658
      beg, end = klen, -qlen
Allen Wang's avatar
Allen Wang committed
659
    elif self.attn_type == "uni":
Hongkun Yu's avatar
Hongkun Yu committed
660
661
      beg, end = klen, -1
    else:
Allen Wang's avatar
Allen Wang committed
662
      raise ValueError("Unknown `attn_type` {}.".format(self.attn_type))
Hongkun Yu's avatar
Hongkun Yu committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

    if self.bi_data:
      fwd_pos_seq = tf.range(beg, end, -1.0)
      bwd_pos_seq = tf.range(-beg, -end, 1.0)

      if dtype is not None and dtype != tf.float32:
        fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
        bwd_pos_seq = tf.cast(bwd_pos_seq, dtype=dtype)

      if self.clamp_len > 0:
        fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
                                       self.clamp_len)
        bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len,
                                       self.clamp_len)

      if bsz is not None:
Hongkun Yu's avatar
Hongkun Yu committed
679
680
        fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz // 2)
        bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, bsz // 2)
Hongkun Yu's avatar
Hongkun Yu committed
681
682
683
684
685
686
687
688
689
690
      else:
        fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, None)
        bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, None)

      pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
    else:
      fwd_pos_seq = tf.range(beg, end, -1.0)
      if dtype is not None and dtype != tf.float32:
        fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
      if self.clamp_len > 0:
Hongkun Yu's avatar
Hongkun Yu committed
691
692
        fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
                                       self.lamp_len)
Hongkun Yu's avatar
Hongkun Yu committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

      pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz)

    pos_emb = self.emb_dropout(pos_emb)

    if mems is None:
      mems = [None] * self.n_layer
    for i in range(self.n_layer):
      # cache new mems
      new_mems.append(
          _cache_mem(output_h, mems[i], self.mem_len, self.reuse_len))
      # pylint: enable=protected-access

      # segment bias
      if seg_id is None:
        r_s_bias_i = None
        seg_embed_i = None
      else:
        r_s_bias_i = self.r_s_bias if not self.untie_r else self.r_s_bias[i]
        seg_embed_i = self.seg_embed[i]

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
      ffn_layer = self.h_positionwise_ffn_layers[i]
      attention_layer = self.rel_multihead_layers[i]
      output_h, output_g = attention_layer(
          h=output_h,
          g=output_g,
          r=pos_emb,
          r_w_bias=self.r_w_bias if not self.untie_r else self.r_w_bias[i],
          r_r_bias=self.r_r_bias if not self.untie_r else self.r_r_bias[i],
          seg_mat=seg_mat,
          r_s_bias=r_s_bias_i,
          seg_embed=seg_embed_i,
          attn_mask_h=non_tgt_mask,
          attn_mask_g=attn_mask,
          mems=mems[i],
          target_mapping=target_mapping)
      output_h = ffn_layer(output_h)
      if output_g is not None:
        output_g = ffn_layer(output_g)
Hongkun Yu's avatar
Hongkun Yu committed
732
733

    if inp_q is not None:
Hongkun Yu's avatar
Hongkun Yu committed
734
      output = output_g
Hongkun Yu's avatar
Hongkun Yu committed
735
    else:
Hongkun Yu's avatar
Hongkun Yu committed
736
      output = output_h
Hongkun Yu's avatar
Hongkun Yu committed
737
738
739
740
741
742
743
744
745
746
747

    return output, new_mems, None


class PretrainingXLNetModel(tf.keras.Model):
  """XLNet keras model combined with pretraining LM loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

Hongkun Yu's avatar
Hongkun Yu committed
748
  def __init__(self, use_proj, xlnet_config, run_config, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
749
750
751
752
753
    super(PretrainingXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)

Allen Wang's avatar
Allen Wang committed
754
755
    self.xlnet_model = networks.XLNetBase(
        vocab_size=self.xlnet_config.n_token,
Hongkun Yu's avatar
Hongkun Yu committed
756
        initializer=self.initializer,
Allen Wang's avatar
Allen Wang committed
757
758
759
760
761
762
763
764
765
766
767
768
769
        attention_type="bi",
        num_layers=self.xlnet_config.n_layer,
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        inner_size=self.xlnet_config.d_inner,
        two_stream=True,
        tie_attention_biases=not self.xlnet_config.untie_r,
        inner_activation=self.xlnet_config.ff_activation,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        memory_length=self.run_config.mem_len,
        reuse_length=self.run_config.reuse_len,
Hongkun Yu's avatar
Hongkun Yu committed
770
        bi_data=self.run_config.bi_data,
Allen Wang's avatar
Allen Wang committed
771
        clamp_length=self.run_config.clamp_len,
Hongkun Yu's avatar
Hongkun Yu committed
772
        use_cls_mask=self.run_config.use_cls_mask,
Allen Wang's avatar
Allen Wang committed
773
774
        name="xlnet_model")

Hongkun Yu's avatar
Hongkun Yu committed
775
    self.lmloss_layer = LMLossLayer(
Allen Wang's avatar
Allen Wang committed
776
777
        vocab_size=self.xlnet_config.n_token,
        hidden_size=self.xlnet_config.d_model,
Hongkun Yu's avatar
Hongkun Yu committed
778
779
780
        initializer=self.initializer,
        tie_weight=True,
        bi_data=self.run_config.bi_data,
Allen Wang's avatar
Allen Wang committed
781
        use_one_hot=self.run_config.use_tpu,
Hongkun Yu's avatar
Hongkun Yu committed
782
        use_proj=use_proj,
Allen Wang's avatar
Allen Wang committed
783
        name="lm_loss")
Hongkun Yu's avatar
Hongkun Yu committed
784
785
786
787

  def call(self, features):
    """Implements call() for the layer."""

Allen Wang's avatar
Allen Wang committed
788
789
790
791
792
    input_ids = features["input_ids"]
    masked_tokens = features["input_q"]
    seg_ids = features["seg_id"]
    perm_mask = features["perm_mask"]
    target_mapping = features["target_mapping"]
Hongkun Yu's avatar
Hongkun Yu committed
793
794

    # target for LM loss
Allen Wang's avatar
Allen Wang committed
795
    target = features["target"]
Hongkun Yu's avatar
Hongkun Yu committed
796
797

    # target mask for LM loss
Allen Wang's avatar
Allen Wang committed
798
    tgt_mask = features["target_mask"]
Hongkun Yu's avatar
Hongkun Yu committed
799

Allen Wang's avatar
Allen Wang committed
800
    mems = features.get("mems", None)
Hongkun Yu's avatar
Hongkun Yu committed
801

Allen Wang's avatar
Allen Wang committed
802
803
804
    model_output, self.new_mems = self.xlnet_model(
        input_ids=input_ids,
        segment_ids=seg_ids,
Hongkun Yu's avatar
Hongkun Yu committed
805
        input_mask=None,
Allen Wang's avatar
Allen Wang committed
806
807
        state=mems,
        permutation_mask=perm_mask,
Hongkun Yu's avatar
Hongkun Yu committed
808
        target_mapping=target_mapping,
Allen Wang's avatar
Allen Wang committed
809
        masked_tokens=masked_tokens)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
810
    lm_loss, _ = self.lmloss_layer(
Allen Wang's avatar
Allen Wang committed
811
        hidden=model_output,
Hongkun Yu's avatar
Hongkun Yu committed
812
        target=target,
Allen Wang's avatar
Allen Wang committed
813
        lookup_table=self.xlnet_model.get_embedding_lookup_table(),
Hongkun Yu's avatar
Hongkun Yu committed
814
815
        target_mask=tgt_mask)
    self.add_loss(lm_loss)
Allen Wang's avatar
Allen Wang committed
816
    return self.new_mems, model_output
Hongkun Yu's avatar
Hongkun Yu committed
817
818
819
820
821
822
823
824
825


class ClassificationXLNetModel(tf.keras.Model):
  """XLNet keras model combined with classification loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

Hongkun Yu's avatar
Hongkun Yu committed
826
  def __init__(self, xlnet_config, run_config, n_class, summary_type, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
827
828
829
830
831
    super(ClassificationXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)

Allen Wang's avatar
Allen Wang committed
832
833
    self.xlnet_model = networks.XLNetBase(
        vocab_size=self.xlnet_config.n_token,
Hongkun Yu's avatar
Hongkun Yu committed
834
        initializer=self.initializer,
Allen Wang's avatar
Allen Wang committed
835
836
837
838
839
840
841
842
843
844
845
846
847
        attention_type="bi",
        num_layers=self.xlnet_config.n_layer,
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        inner_size=self.xlnet_config.d_inner,
        two_stream=False,
        tie_attention_biases=not self.xlnet_config.untie_r,
        inner_activation=self.xlnet_config.ff_activation,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        memory_length=self.run_config.mem_len,
        reuse_length=self.run_config.reuse_len,
Hongkun Yu's avatar
Hongkun Yu committed
848
        bi_data=self.run_config.bi_data,
Allen Wang's avatar
Allen Wang committed
849
850
851
        clamp_length=self.run_config.clamp_len,
        use_cls_mask=False,
        name="xlnet_model")
Hongkun Yu's avatar
Hongkun Yu committed
852
853

    self.summarization_layer = Summarization(
Allen Wang's avatar
Allen Wang committed
854
855
856
857
858
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
Hongkun Yu's avatar
Hongkun Yu committed
859
860
        initializer=self.initializer,
        use_proj=True,
Hongkun Yu's avatar
Hongkun Yu committed
861
        summary_type=summary_type,
Allen Wang's avatar
Allen Wang committed
862
        name="sequence_summary")
Hongkun Yu's avatar
Hongkun Yu committed
863
864

    self.cl_loss_layer = ClassificationLossLayer(
Allen Wang's avatar
Allen Wang committed
865
        n_class=n_class, initializer=self.initializer, name="classification")
Hongkun Yu's avatar
Hongkun Yu committed
866
867
868

  def call(self, features):
    """Implements call() for the layer."""
Allen Wang's avatar
Allen Wang committed
869
    batch_size_per_core = tf.shape(features["input_ids"])[0]
Hongkun Yu's avatar
Hongkun Yu committed
870

Allen Wang's avatar
Allen Wang committed
871
872
873
    input_ids = features["input_ids"]
    segment_ids = features["segment_ids"]
    input_mask = features["input_mask"]
Hongkun Yu's avatar
Hongkun Yu committed
874

Allen Wang's avatar
Allen Wang committed
875
    label = tf.reshape(features["label_ids"], [batch_size_per_core])
Hongkun Yu's avatar
Hongkun Yu committed
876

Allen Wang's avatar
Allen Wang committed
877
    mems = features.get("mems", None)
Hongkun Yu's avatar
Hongkun Yu committed
878

Allen Wang's avatar
Allen Wang committed
879
880
    attention_output, new_mems = (
        self.xlnet_model(input_ids, segment_ids, input_mask, mems))
Hongkun Yu's avatar
Hongkun Yu committed
881

Allen Wang's avatar
Allen Wang committed
882
    summary = self.summarization_layer(attention_output)
Hongkun Yu's avatar
Hongkun Yu committed
883
    per_example_loss, logits = self.cl_loss_layer(hidden=summary, labels=label)
Hongkun Yu's avatar
Hongkun Yu committed
884
    self.add_loss(tf.keras.backend.mean(per_example_loss))
Hongkun Yu's avatar
Hongkun Yu committed
885
    return new_mems, logits
Hongkun Yu's avatar
Hongkun Yu committed
886
887
888
889
890


class LMLossLayer(tf.keras.layers.Layer):
  """Layer computing cross entropy loss for language modeling."""

Hongkun Yu's avatar
Hongkun Yu committed
891
  def __init__(self,
Allen Wang's avatar
Allen Wang committed
892
893
               vocab_size,
               hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
894
895
896
               initializer,
               tie_weight=False,
               bi_data=True,
Allen Wang's avatar
Allen Wang committed
897
               use_one_hot=False,
Hongkun Yu's avatar
Hongkun Yu committed
898
899
               use_proj=False,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
900
901
902
    """Constructs LMLoss layer.

    Args:
Allen Wang's avatar
Allen Wang committed
903
904
      vocab_size: Number of tokens in vocabulary.
      hidden_size: The dimension of model hidden state.
Hongkun Yu's avatar
Hongkun Yu committed
905
906
      initializer: Initializer used for parameters.
      tie_weight: Whether to share weights between embedding lookup layer and
Hongkun Yu's avatar
Hongkun Yu committed
907
908
909
        next-token prediction layer.
      bi_data: Whether to use bidirectional input pipeline. Usually set to True
        during pretraining and False during finetuning.
Allen Wang's avatar
Allen Wang committed
910
911
      use_one_hot: bool, whether to use one hot encodings. This should be used
        when TPUs are used.
Hongkun Yu's avatar
Hongkun Yu committed
912
      use_proj: bool, whether to add a projection layer before LM prediction.
Hongkun Yu's avatar
Hongkun Yu committed
913
914
915
      **kwargs: Other parameters.
    """
    super(LMLossLayer, self).__init__(**kwargs)
Allen Wang's avatar
Allen Wang committed
916
917
    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
Hongkun Yu's avatar
Hongkun Yu committed
918
919
920
921
    self.initializer = initializer

    self.tie_weight = tie_weight
    self.bi_data = bi_data
Allen Wang's avatar
Allen Wang committed
922
    self.use_one_hot = use_one_hot
Hongkun Yu's avatar
Hongkun Yu committed
923
    self.use_proj = use_proj
Hongkun Yu's avatar
Hongkun Yu committed
924
925
926

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
927
928
    if self.use_proj:
      self.proj_layer = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
929
          units=self.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
930
931
          kernel_initializer=self.initializer,
          activation=gelu,
Allen Wang's avatar
Allen Wang committed
932
          name="lm_projection/dense")
Hongkun Yu's avatar
Hongkun Yu committed
933
      self.proj_layer_norm = tf.keras.layers.LayerNormalization(
Allen Wang's avatar
Allen Wang committed
934
          axis=-1, epsilon=1e-12, name="lm_projection/LayerNorm")
Hongkun Yu's avatar
Hongkun Yu committed
935
    if not self.tie_weight:
Hongkun Yu's avatar
Hongkun Yu committed
936
      self.softmax_w = self.add_weight(
Allen Wang's avatar
Allen Wang committed
937
938
          "weight",
          shape=[self.vocab_size, self.hidden_size],
Hongkun Yu's avatar
Hongkun Yu committed
939
          initializer=self.initializer)
Hongkun Yu's avatar
Hongkun Yu committed
940

Hongkun Yu's avatar
Hongkun Yu committed
941
    self.softmax_b = self.add_weight(
Allen Wang's avatar
Allen Wang committed
942
        "bias", shape=[self.vocab_size], initializer=tf.zeros_initializer())
Hongkun Yu's avatar
Hongkun Yu committed
943
944
945

    super(LMLossLayer, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
946
  def call(self, hidden, target, lookup_table, target_mask):
Hongkun Yu's avatar
Hongkun Yu committed
947
    """Implements call() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
948
949
    if self.use_proj:
      hidden = self.proj_layer_norm(self.proj_layer(hidden))
Hongkun Yu's avatar
Hongkun Yu committed
950
    if self.tie_weight:
Allen Wang's avatar
Allen Wang committed
951
      logits = tf.einsum("ibd,nd->ibn", hidden, lookup_table) + self.softmax_b
Hongkun Yu's avatar
Hongkun Yu committed
952
    else:
Allen Wang's avatar
Allen Wang committed
953
      logits = tf.einsum("ibd,nd->ibn", hidden, self.softmax_w) + self.softmax_b
Hongkun Yu's avatar
Hongkun Yu committed
954

Allen Wang's avatar
Allen Wang committed
955
956
    if self.use_one_hot:
      one_hot_target = tf.one_hot(target, self.vocab_size, dtype=logits.dtype)
Hongkun Yu's avatar
Hongkun Yu committed
957
958
      loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)
    else:
Hongkun Yu's avatar
Hongkun Yu committed
959
960
      loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
          labels=target, logits=logits)
Hongkun Yu's avatar
Hongkun Yu committed
961

Hongkun Yu's avatar
Hongkun Yu committed
962
    total_loss = tf.reduce_sum(loss * target_mask) / tf.reduce_sum(target_mask)
Hongkun Yu's avatar
Hongkun Yu committed
963

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
964
    return total_loss, logits
Hongkun Yu's avatar
Hongkun Yu committed
965
966
967
968
969
970


class Summarization(tf.keras.layers.Layer):
  """The layer to pool the output from XLNet model into a vector."""

  def __init__(self,
Allen Wang's avatar
Allen Wang committed
971
972
973
974
975
               hidden_size,
               num_attention_heads,
               head_size,
               dropout_rate,
               attention_dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
976
977
               initializer,
               use_proj=True,
Allen Wang's avatar
Allen Wang committed
978
               summary_type="last",
Hongkun Yu's avatar
Hongkun Yu committed
979
980
981
982
               **kwargs):
    """Constructs Summarization layer.

    Args:
Allen Wang's avatar
Allen Wang committed
983
984
985
986
987
      hidden_size: int, the dimension of model hidden state.
      num_attention_heads: int, the number of attention heads.
      head_size: int, the dimension size of each attention head.
      dropout_rate: float, dropout rate.
      attention_dropout_rate: float, dropout rate on attention probabilities.
Hongkun Yu's avatar
Hongkun Yu committed
988
989
990
991
992
993
      initializer: Initializer used for parameters.
      use_proj: bool, whether to use projection layer for summarization.
      summary_type: Method used to summarize a sequence into a compact vector.
      **kwargs: Other parameters.
    """
    super(Summarization, self).__init__(**kwargs)
Allen Wang's avatar
Allen Wang committed
994
995
996
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.head_size = head_size
Hongkun Yu's avatar
Hongkun Yu committed
997
998
    self.initializer = initializer

Allen Wang's avatar
Allen Wang committed
999
1000
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
Hongkun Yu's avatar
Hongkun Yu committed
1001
1002
1003
1004
1005
1006
1007
    self.use_proj = use_proj
    self.summary_type = summary_type

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    if self.use_proj:
      self.proj_layer = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
1008
          units=self.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
1009
1010
          kernel_initializer=self.initializer,
          activation=tf.nn.tanh,
Allen Wang's avatar
Allen Wang committed
1011
1012
          name="summary")
    self.dropout_layer = tf.keras.layers.Dropout(rate=self.dropout_rate)
Hongkun Yu's avatar
Hongkun Yu committed
1013
1014
1015
1016
1017

    super(Summarization, self).build(unused_input_shapes)

  def call(self, inputs):
    """Implements call() for the layer."""
Allen Wang's avatar
Allen Wang committed
1018
1019
1020
1021
    if self.summary_type == "last":
      summary = inputs[:, -1, :]
    elif self.summary_type == "first":
      summary = inputs[:, 0, :]
Hongkun Yu's avatar
Hongkun Yu committed
1022
    else:
Allen Wang's avatar
Allen Wang committed
1023
      raise ValueError("Invalid summary type provided: %s" % self.summary_type)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1024
1025
    if self.use_proj:
      summary = self.proj_layer(summary)
Hongkun Yu's avatar
Hongkun Yu committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    summary = self.dropout_layer(summary)
    return summary


class ClassificationLossLayer(tf.keras.layers.Layer):
  """Layer computing cross entropy loss for classification task."""

  def __init__(self, n_class, initializer, **kwargs):
    """Constructs Summarization layer.

    Args:
      n_class: Number of tokens in vocabulary.
      initializer: Initializer used for parameters.
      **kwargs: Other parameters.
    """
    super(ClassificationLossLayer, self).__init__(**kwargs)

    self.n_class = n_class
    self.initializer = initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.proj_layer = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
1049
        units=self.n_class, kernel_initializer=self.initializer, name="logit")
Hongkun Yu's avatar
Hongkun Yu committed
1050
1051
1052

    super(ClassificationLossLayer, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
1053
  def call(self, hidden, labels):
Hongkun Yu's avatar
Hongkun Yu committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    """Implements call() for the layer."""

    logits = self.proj_layer(hidden)
    one_hot_target = tf.one_hot(labels, self.n_class, dtype=hidden.dtype)  # pytype: disable=attribute-error
    loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)

    return loss, logits


class QAXLNetModel(tf.keras.Model):
  """XLNet keras model combined with question answering loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

  def __init__(self, xlnet_config, run_config, start_n_top, end_n_top,
               **kwargs):
    super(QAXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)

Allen Wang's avatar
Allen Wang committed
1077
1078
    self.xlnet_model = networks.XLNetBase(
        vocab_size=self.xlnet_config.n_token,
Hongkun Yu's avatar
Hongkun Yu committed
1079
        initializer=self.initializer,
Allen Wang's avatar
Allen Wang committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        attention_type="bi",
        num_layers=self.xlnet_config.n_layer,
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        inner_size=self.xlnet_config.d_inner,
        tie_attention_biases=not self.xlnet_config.untie_r,
        inner_activation=self.xlnet_config.ff_activation,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        two_stream=False,
        memory_length=self.run_config.mem_len,
        reuse_length=self.run_config.reuse_len,
Hongkun Yu's avatar
Hongkun Yu committed
1093
        bi_data=self.run_config.bi_data,
Allen Wang's avatar
Allen Wang committed
1094
1095
1096
        clamp_length=self.run_config.clamp_len,
        use_cls_mask=False,
        name="xlnet_model")
Hongkun Yu's avatar
Hongkun Yu committed
1097
1098

    self.qa_loss_layer = QALossLayer(
Allen Wang's avatar
Allen Wang committed
1099
        hidden_size=self.xlnet_config.d_model,
Hongkun Yu's avatar
Hongkun Yu committed
1100
1101
1102
        start_n_top=start_n_top,
        end_n_top=end_n_top,
        initializer=self.initializer,
Allen Wang's avatar
Allen Wang committed
1103
1104
        dropout_rate=self.run_config.dropout,
        name="qa_loss_layer")
Hongkun Yu's avatar
Hongkun Yu committed
1105
1106
1107
1108

  def call(self, features, training=False):
    """Implements call() for the layer."""

Allen Wang's avatar
Allen Wang committed
1109
1110
1111
    input_ids = features["input_ids"]
    segment_ids = features["segment_ids"]
    input_mask = features["input_mask"]
Hongkun Yu's avatar
Hongkun Yu committed
1112

Allen Wang's avatar
Allen Wang committed
1113
1114
    cls_index = tf.reshape(features["cls_index"], [-1])
    p_mask = features["p_mask"]
Hongkun Yu's avatar
Hongkun Yu committed
1115

Allen Wang's avatar
Allen Wang committed
1116
1117
    attention_output, new_mems = (
        self.xlnet_model(input_ids, segment_ids, input_mask))
Hongkun Yu's avatar
Hongkun Yu committed
1118
1119
1120

    if training:
      loss, logits = self.qa_loss_layer(
Allen Wang's avatar
Allen Wang committed
1121
          hidden=attention_output,
Hongkun Yu's avatar
Hongkun Yu committed
1122
1123
          p_mask=p_mask,
          cls_index=cls_index,
Allen Wang's avatar
Allen Wang committed
1124
1125
1126
          start_positions=features["start_positions"],
          end_positions=features["end_positions"],
          is_impossible=features["is_impossible"])
Hongkun Yu's avatar
Hongkun Yu committed
1127
      self.add_loss(loss)
Hongkun Yu's avatar
Hongkun Yu committed
1128
      return new_mems, logits
Hongkun Yu's avatar
Hongkun Yu committed
1129
1130
    else:
      results = self.qa_loss_layer(
Allen Wang's avatar
Allen Wang committed
1131
          hidden=attention_output, p_mask=p_mask, cls_index=cls_index)
Hongkun Yu's avatar
Hongkun Yu committed
1132
1133
1134
1135
      return results


class QALossLayer(tf.keras.layers.Layer):
Hongkun Yu's avatar
Hongkun Yu committed
1136
  """Layer computing position and regression loss for question answering task."""
Hongkun Yu's avatar
Hongkun Yu committed
1137

Allen Wang's avatar
Allen Wang committed
1138
1139
  def __init__(self, hidden_size, start_n_top, end_n_top, initializer,
               dropout_rate, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
1140
1141
1142
    """Constructs Summarization layer.

    Args:
Allen Wang's avatar
Allen Wang committed
1143
      hidden_size: Int, the hidden size.
Hongkun Yu's avatar
Hongkun Yu committed
1144
1145
1146
      start_n_top: Beam size for span start.
      end_n_top: Beam size for span end.
      initializer: Initializer used for parameters.
Allen Wang's avatar
Allen Wang committed
1147
      dropout_rate: float, dropout rate.
Hongkun Yu's avatar
Hongkun Yu committed
1148
1149
1150
      **kwargs: Other parameters.
    """
    super(QALossLayer, self).__init__(**kwargs)
Allen Wang's avatar
Allen Wang committed
1151
    self.hidden_size = hidden_size
Hongkun Yu's avatar
Hongkun Yu committed
1152
1153
1154
    self.start_n_top = start_n_top
    self.end_n_top = end_n_top
    self.initializer = initializer
Allen Wang's avatar
Allen Wang committed
1155
    self.dropout_rate = dropout_rate
Hongkun Yu's avatar
Hongkun Yu committed
1156
1157
1158
1159

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.start_logits_proj_layer = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
1160
        units=1, kernel_initializer=self.initializer, name="start_logits/dense")
Hongkun Yu's avatar
Hongkun Yu committed
1161
    self.end_logits_proj_layer0 = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
1162
        units=self.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
1163
1164
        kernel_initializer=self.initializer,
        activation=tf.nn.tanh,
Allen Wang's avatar
Allen Wang committed
1165
        name="end_logits/dense_0")
Hongkun Yu's avatar
Hongkun Yu committed
1166
    self.end_logits_proj_layer1 = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
1167
        units=1, kernel_initializer=self.initializer, name="end_logits/dense_1")
Hongkun Yu's avatar
Hongkun Yu committed
1168
    self.end_logits_layer_norm = tf.keras.layers.LayerNormalization(
Allen Wang's avatar
Allen Wang committed
1169
        axis=-1, epsilon=1e-12, name="end_logits/LayerNorm")
Hongkun Yu's avatar
Hongkun Yu committed
1170
    self.answer_class_proj_layer0 = tf.keras.layers.Dense(
Allen Wang's avatar
Allen Wang committed
1171
        units=self.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
1172
1173
        kernel_initializer=self.initializer,
        activation=tf.nn.tanh,
Allen Wang's avatar
Allen Wang committed
1174
        name="answer_class/dense_0")
Hongkun Yu's avatar
Hongkun Yu committed
1175
1176
1177
1178
    self.answer_class_proj_layer1 = tf.keras.layers.Dense(
        units=1,
        kernel_initializer=self.initializer,
        use_bias=False,
Allen Wang's avatar
Allen Wang committed
1179
1180
        name="answer_class/dense_1")
    self.ans_feature_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
Hongkun Yu's avatar
Hongkun Yu committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    super(QALossLayer, self).build(unused_input_shapes)

  def __call__(self, hidden, p_mask, cls_index, **kwargs):
    return super(QALossLayer, self).__call__(
        (hidden, p_mask, cls_index, kwargs))

  def call(self, inputs, training=False):
    """Implements call() for the layer."""
    hidden, p_mask, cls_index, kwargs = inputs
    return_dict = {}
Allen Wang's avatar
Allen Wang committed
1191
    seq_len = tf.shape(hidden)[1]
Hongkun Yu's avatar
Hongkun Yu committed
1192

Allen Wang's avatar
Allen Wang committed
1193
    hidden = tf.transpose(hidden, [1, 0, 2])
Hongkun Yu's avatar
Hongkun Yu committed
1194
1195
1196
1197
1198
    start_logits = self.start_logits_proj_layer(hidden)
    start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
    start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
    start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
    if training:
Allen Wang's avatar
Allen Wang committed
1199
1200
1201
      start_positions = kwargs["start_positions"]
      end_positions = kwargs["end_positions"]
      is_impossible = kwargs["is_impossible"]
Hongkun Yu's avatar
Hongkun Yu committed
1202
1203
1204
      start_positions = tf.reshape(start_positions, [-1])
      start_index = tf.one_hot(
          start_positions, depth=seq_len, axis=-1, dtype=tf.float32)
Allen Wang's avatar
Allen Wang committed
1205
      start_features = tf.einsum("lbh,bl->bh", hidden, start_index)
Hongkun Yu's avatar
Hongkun Yu committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
      start_features = tf.tile(start_features[None], [seq_len, 1, 1])
      end_logits = self.end_logits_proj_layer0(
          tf.concat([hidden, start_features], axis=-1))

      end_logits = self.end_logits_layer_norm(end_logits)

      end_logits = self.end_logits_proj_layer1(end_logits)
      end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
      end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
    else:
      # during inference, compute the end logits based on beam search

      start_top_log_probs, start_top_index = tf.nn.top_k(
          start_log_probs, k=self.start_n_top)
      start_index = tf.one_hot(
          start_top_index, depth=seq_len, axis=-1, dtype=tf.float32)
Allen Wang's avatar
Allen Wang committed
1223
      start_features = tf.einsum("lbh,bkl->bkh", hidden, start_index)
Hongkun Yu's avatar
Hongkun Yu committed
1224
1225
1226
1227
      end_input = tf.tile(hidden[:, :, None], [1, 1, self.start_n_top, 1])
      start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1])
      end_input = tf.concat([end_input, start_features], axis=-1)
      end_logits = self.end_logits_proj_layer0(end_input)
Allen Wang's avatar
Allen Wang committed
1228
      end_logits = tf.reshape(end_logits, [seq_len, -1, self.hidden_size])
Hongkun Yu's avatar
Hongkun Yu committed
1229
1230
1231
      end_logits = self.end_logits_layer_norm(end_logits)

      end_logits = tf.reshape(end_logits,
Allen Wang's avatar
Allen Wang committed
1232
                              [seq_len, -1, self.start_n_top, self.hidden_size])
Hongkun Yu's avatar
Hongkun Yu committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

      end_logits = self.end_logits_proj_layer1(end_logits)
      end_logits = tf.reshape(end_logits, [seq_len, -1, self.start_n_top])
      end_logits = tf.transpose(end_logits, [1, 2, 0])
      end_logits_masked = end_logits * (
          1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
      end_top_log_probs, end_top_index = tf.nn.top_k(
          end_log_probs, k=self.end_n_top)
      end_top_log_probs = tf.reshape(end_top_log_probs,
                                     [-1, self.start_n_top * self.end_n_top])
      end_top_index = tf.reshape(end_top_index,
                                 [-1, self.start_n_top * self.end_n_top])

    if training:
Allen Wang's avatar
Allen Wang committed
1248
1249
      return_dict["start_log_probs"] = start_log_probs
      return_dict["end_log_probs"] = end_log_probs
Hongkun Yu's avatar
Hongkun Yu committed
1250
    else:
Allen Wang's avatar
Allen Wang committed
1251
1252
1253
1254
      return_dict["start_top_log_probs"] = start_top_log_probs
      return_dict["start_top_index"] = start_top_index
      return_dict["end_top_log_probs"] = end_top_log_probs
      return_dict["end_top_index"] = end_top_index
Hongkun Yu's avatar
Hongkun Yu committed
1255
1256
1257
1258
    # an additional layer to predict answerability

    # get the representation of CLS
    cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
Allen Wang's avatar
Allen Wang committed
1259
    cls_feature = tf.einsum("lbh,bl->bh", hidden, cls_index)
Hongkun Yu's avatar
Hongkun Yu committed
1260
1261

    # get the representation of START
Allen Wang's avatar
Allen Wang committed
1262
1263
    start_p = tf.nn.softmax(start_logits_masked, axis=-1, name="softmax_start")
    start_feature = tf.einsum("lbh,bl->bh", hidden, start_p)
Hongkun Yu's avatar
Hongkun Yu committed
1264
1265
1266
1267
1268
1269

    ans_feature = tf.concat([start_feature, cls_feature], -1)
    ans_feature = self.answer_class_proj_layer0(ans_feature)
    ans_feature = self.ans_feature_dropout(ans_feature)
    cls_logits = self.answer_class_proj_layer1(ans_feature)
    cls_logits = tf.squeeze(cls_logits, -1)
Allen Wang's avatar
Allen Wang committed
1270
    return_dict["cls_logits"] = cls_logits
Hongkun Yu's avatar
Hongkun Yu committed
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

    if not training:
      return return_dict

    def compute_loss(log_probs, positions):
      one_hot_positions = tf.one_hot(positions, depth=seq_len, dtype=tf.float32)

      loss = -tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
      loss = tf.reduce_mean(loss)
      return loss

    start_loss = compute_loss(start_log_probs, start_positions)
    end_loss = compute_loss(end_log_probs, end_positions)

    total_loss = (start_loss + end_loss) * 0.5

    is_impossible = tf.reshape(is_impossible, [-1])
    regression_loss = tf.nn.sigmoid_cross_entropy_with_logits(
        labels=is_impossible, logits=cls_logits)
    regression_loss = tf.reduce_mean(regression_loss)

    total_loss += regression_loss * 0.5
    return total_loss, cls_logits