xlnet_modeling.py 45.3 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras layers of XLNet model in TF 2.0."""

import copy

import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
20
from official.nlp.xlnet import data_utils
Hongkun Yu's avatar
Hongkun Yu committed
21
22


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
24
def gelu(x):
  return tf.keras.activations.gelu(x, approximate=True)
Hongkun Yu's avatar
Hongkun Yu committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


def rel_shift(x, klen=-1):
  """Performs relative shift to form the relative attention score."""
  x_size = tf.shape(x)

  x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
  x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
  x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
  x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])

  return x


def _get_initializer(flags):
Hongkun Yu's avatar
Hongkun Yu committed
40
  """Get variable initializer."""
Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
  if flags.init_method == 'uniform':
    initializer = tf.keras.initializers.RandomUniform(
        minval=-flags.init_range, maxval=flags.init_range)
  elif flags.init_method == 'normal':
    initializer = tf.keras.initializers.RandomNormal(stddev=flags.init_std)
  else:
    raise ValueError('Initializer {} not supported'.format(flags.init_method))
  return initializer


def _create_mask(qlen, mlen, dtype=tf.float32, same_length=False):
  """Creates attention mask when single-side context allowed only."""
  attn_mask = tf.ones([qlen, qlen], dtype=dtype)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
  mask_u = tf.linalg.band_part(attn_mask, 0, -1)
  mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
Hongkun Yu's avatar
Hongkun Yu committed
56
57
58
  attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
  ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
  if same_length:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
    mask_l = tf.linalg.band_part(attn_mask, -1, 0)
Hongkun Yu's avatar
Hongkun Yu committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)

  return ret


def _cache_mem(curr_out, prev_mem, mem_len, reuse_len=None):
  """cache hidden states into memory."""

  if mem_len is None or mem_len == 0:
    return None
  else:
    if reuse_len is not None and reuse_len > 0:
      curr_out = curr_out[:reuse_len]

    if prev_mem is None:
      new_mem = curr_out[-mem_len:]
    else:
      new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]

  return tf.keras.backend.stop_gradient(new_mem)


def is_special_none_tensor(tensor):
  """Checks if a tensor is a special None Tensor."""
  return tensor.shape.ndims == 0 and tensor.dtype == tf.int32


Allen Wang's avatar
Allen Wang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@tf.keras.utils.register_keras_serializable(package='Text')
class RelativePositionEncoding(tf.keras.layers.Layer):
  """Creates a relative positional encoding.

  This layer creates a relative positional encoding as described in
  "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
  (https://arxiv.org/abs/1901.02860).

  Rather than an absolute position embedding as in Transformer, this
  formulation represents position as the relative distance between tokens using
  sinusoidal positional embeddings.

  Note: This layer is currently experimental.

  Attributes:
    hidden_size: The dimensionality of the input embeddings.
  """

  def __init__(self, hidden_size, **kwargs):
    super(RelativePositionEncoding, self).__init__(**kwargs)
    self._hidden_size = hidden_size
    self._inv_freq = 1.0 / (10000.0**(
        tf.range(0, self._hidden_size, 2.0) / self._hidden_size))

  def call(self, pos_seq, batch_size=None):
    """Implements call() for the layer.

    Arguments:
      pos_seq: A 1-D `Tensor`
      batch_size: The optionally provided batch size that tiles the relative
        positional encoding.

    Returns:
      The relative positional encoding of shape:
        [len(pos_seq), batch_size, hidden_size] if batch_size is provided, else
        [len(pos_seq), 1, hidden_size].
    """
    sinusoid_input = tf.einsum('i,d->id', pos_seq, self._inv_freq)
    pos_emb = tf.concat([tf.sin(sinusoid_input), tf.cos(sinusoid_input)], -1)
Hongkun Yu's avatar
Hongkun Yu committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    pos_emb = pos_emb[:, None, :]

    if batch_size is not None:
      pos_emb = tf.tile(pos_emb, [1, batch_size, 1])
    return pos_emb


class RelativeAttention(tf.keras.layers.Layer):
  """Core calculations for relative attention."""

  def __init__(self, dropout_att, scale):
    super(RelativeAttention, self).__init__()
    self.scale = scale
    self.dropout_att = dropout_att

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""

    self.attention_probs_dropout = tf.keras.layers.Dropout(
        rate=self.dropout_att)

    super(RelativeAttention, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
149
150
  def call(self, q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat,
           r_w_bias, r_r_bias, r_s_bias, attn_mask):
Hongkun Yu's avatar
Hongkun Yu committed
151
152
153
154
155
156
157
158
159
160
161
162
163
    """Implements call() for the layer."""

    # content based attention score
    ac = tf.einsum('ibnd,jbnd->ijbn', q_head + r_w_bias, k_head_h)

    # position based attention score
    bd = tf.einsum('ibnd,jbnd->ijbn', q_head + r_r_bias, k_head_r)
    bd = rel_shift(bd, klen=tf.shape(ac)[1])

    # segment-based attention score
    if seg_mat is None:
      ef = 0
    else:
Hongkun Yu's avatar
Hongkun Yu committed
164
165
166
167
168
169
      ef = tf.einsum('ibnd,snd->isbn', q_head + r_s_bias, seg_embed)
      tgt_shape = tf.shape(bd)
      ef = tf.where(
          tf.broadcast_to(tf.expand_dims(seg_mat, 3), tgt_shape),
          tf.broadcast_to(ef[:, 1:, :, :], tgt_shape),
          tf.broadcast_to(ef[:, :1, :, :], tgt_shape))
Hongkun Yu's avatar
Hongkun Yu committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    # merges attention scores and performs masking
    attn_score = (ac + bd + ef) * self.scale
    if attn_mask is not None:
      attn_score = attn_score - 1e30 * attn_mask

    # attention probability
    attn_prob = tf.nn.softmax(attn_score, 1)
    attn_prob = self.attention_probs_dropout(attn_prob)

    # attention output
    attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

    return attn_vec


class PositionwiseFF(tf.keras.layers.Layer):
  """Positionwise feed-forward layer."""

Hongkun Yu's avatar
Hongkun Yu committed
189
190
  def __init__(self, d_model, d_inner, dropout, kernel_initializer,
               activation_type, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    super(PositionwiseFF, self).__init__(**kwargs)
    self.d_model = d_model
    self.d_inner = d_inner
    self.dropout = dropout
    self.activation_type = activation_type
    self.kernel_initializer = kernel_initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    if self.activation_type == 'relu':
      activation = tf.nn.relu
    elif self.activation_type == 'gelu':
      activation = gelu
    else:
      raise (ValueError('Unsupported activation type {}'.format(
          self.activation_type)))
    self.inner_projection_layer = (
        tf.keras.layers.Dense(
            units=self.d_inner,
            activation=activation,
            kernel_initializer=self.kernel_initializer,
            name='layer_1'))
    self.output_projection_layer = (
        tf.keras.layers.Dense(
            units=self.d_model,
            kernel_initializer=self.kernel_initializer,
            name='layer_2'))
Hongkun Yu's avatar
Hongkun Yu committed
218
219
    self.output_dropout = tf.keras.layers.Dropout(
        rate=self.dropout, name='drop_2')
Hongkun Yu's avatar
Hongkun Yu committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    self.output_layer_norm = (
        tf.keras.layers.LayerNormalization(
            name='LayerNorm', axis=-1, epsilon=1e-12))
    super(PositionwiseFF, self).build(unused_input_shapes)

  def call(self, inp):
    """Implements call() for the layer."""

    output = self.inner_projection_layer(inp)
    output = self.output_projection_layer(output)
    output = self.output_dropout(output)
    output = self.output_layer_norm(output + inp)
    return output


class EmbeddingLookup(tf.keras.layers.Layer):
  """Looks up words embeddings for id tensor."""

Hongkun Yu's avatar
Hongkun Yu committed
238
  def __init__(self, n_token, d_embed, initializer, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    super(EmbeddingLookup, self).__init__(**kwargs)
    self.n_token = n_token
    self.d_embed = d_embed
    self.initializer = initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.lookup_table = self.add_weight(
        'lookup_table',
        shape=[self.n_token, self.d_embed],
        initializer=self.initializer,
        dtype=self.dtype)

    super(EmbeddingLookup, self).build(unused_input_shapes)

  def call(self, inputs):
Hongkun Yu's avatar
Hongkun Yu committed
255
    return tf.nn.embedding_lookup(self.lookup_table, inputs)
Hongkun Yu's avatar
Hongkun Yu committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272


class RelativeMultiheadAttention(tf.keras.layers.Layer):
  """Multi-head attention with relative embedding."""

  def __init__(self, d_model, n_head, d_head, dropout, dropout_att,
               kernel_initializer, **kwargs):
    super(RelativeMultiheadAttention, self).__init__(**kwargs)
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.dropout = dropout
    self.dropout_att = dropout_att
    self.initializer = kernel_initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
273
    self.scale = 1.0 / (self.d_head**0.5)
Hongkun Yu's avatar
Hongkun Yu committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    self.output_layer_norm = tf.keras.layers.LayerNormalization(
        name='LayerNorm', axis=-1, epsilon=1e-12)

    self.kh_projection_layer = self.add_weight(
        'k/kernel',
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.vh_projection_layer = self.add_weight(
        'v/kernel',
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.kr_projection_layer = self.add_weight(
        'r/kernel',
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.qh_projection_layer = self.add_weight(
        'q/kernel',
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)

295
    self.relative_attention_layer = RelativeAttention(
Hongkun Yu's avatar
Hongkun Yu committed
296
297
298
299
300
301
302
303
304
305
306
        dropout_att=self.dropout_att, scale=self.scale)

    self.proj_o = self.add_weight(
        'o/kernel',
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)

    self.attention_dropout = tf.keras.layers.Dropout(rate=self.dropout)

    super(RelativeMultiheadAttention, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
307
308
  def call(self, h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed,
           attn_mask_h, attn_mask_g, mems, target_mapping):
Hongkun Yu's avatar
Hongkun Yu committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    """Implements call() for the layer."""

    if mems is not None and mems.shape.ndims > 1:
      cat = tf.concat([mems, h], 0)
    else:
      cat = h

    # content heads
    q_head_h = tf.einsum('ibh,hnd->ibnd', h, self.qh_projection_layer)
    k_head_h = tf.einsum('ibh,hnd->ibnd', cat, self.kh_projection_layer)
    v_head_h = tf.einsum('ibh,hnd->ibnd', cat, self.vh_projection_layer)

    # positional heads
    k_head_r = tf.einsum('ibh,hnd->ibnd', r, self.kr_projection_layer)

    # core attention ops
Hongkun Yu's avatar
Hongkun Yu committed
325
326
327
328
    attn_vec_h = self.relative_attention_layer(q_head_h, k_head_h, v_head_h,
                                               k_head_r, seg_embed, seg_mat,
                                               r_w_bias, r_r_bias, r_s_bias,
                                               attn_mask_h)
Hongkun Yu's avatar
Hongkun Yu committed
329
330

    # post processing
331
332
333
    output_h = tf.einsum('ibnd,hnd->ibh', attn_vec_h, self.proj_o)
    output_h = self.attention_dropout(output_h)
    output_h = self.output_layer_norm(output_h + h)
Hongkun Yu's avatar
Hongkun Yu committed
334

335
336
337
338
339
340
    output_g = None
    if g is not None:  # enable two-stream attention
      # g-stream
      q_head_g = tf.einsum('ibh,hnd->ibnd', g, self.qh_projection_layer)
      if target_mapping is not None:
        q_head_g = tf.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
341
342
343
344
        attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
                                                   k_head_r, seg_embed, seg_mat,
                                                   r_w_bias, r_r_bias, r_s_bias,
                                                   attn_mask_g)
345
        attn_vec_g = tf.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
346

347
      else:
Hongkun Yu's avatar
Hongkun Yu committed
348
349
350
351
        attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
                                                   k_head_r, seg_embed, seg_mat,
                                                   r_w_bias, r_r_bias, r_s_bias,
                                                   attn_mask_g)
Hongkun Yu's avatar
Hongkun Yu committed
352

353
354
355
356
357
358
      # post processing
      output_g = tf.einsum('ibnd,hnd->ibh', attn_vec_g, self.proj_o)
      output_g = self.attention_dropout(output_g)
      output_g = self.output_layer_norm(output_g + g)

    return (output_h, output_g)
Hongkun Yu's avatar
Hongkun Yu committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383


class TransformerXLModel(tf.keras.layers.Layer):
  """Defines a Transformer-XL computation graph with additional support for XLNet."""

  def __init__(self,
               n_token,
               n_layer,
               d_model,
               n_head,
               d_head,
               d_inner,
               dropout,
               dropout_att,
               attn_type,
               bi_data,
               is_training,
               initializer,
               mem_len=None,
               same_length=False,
               clamp_len=-1,
               untie_r=False,
               use_tpu=True,
               reuse_len=None,
               ff_activation='relu',
Hongkun Yu's avatar
Hongkun Yu committed
384
               use_cls_mask=False,
Hongkun Yu's avatar
Hongkun Yu committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
               **kwargs):
    """Initializes TransformerXLModel.

    Args:
      n_token: int, the number of tokens in vocabulary.
      n_layer: int, the number of layers.
      d_model: int, the hidden size.
      n_head: int, the number of attention heads.
      d_head: int, the dimension size of each attention head.
      d_inner: int, the hidden size in feed-forward layers.
      dropout: float, dropout rate.
      dropout_att: float, dropout rate on attention probabilities.
      attn_type: str, "uni" or "bi".
      bi_data: bool, whether to use bidirectional input pipeline. Usually set to
        True during pretraining and False during finetuning.
      is_training: bool, whether in training mode.
      initializer: A tf initializer.
      mem_len: int, the number of tokens to cache.
      same_length: bool, whether to use the same attention length for each
        token.
      clamp_len: int, clamp all relative distances larger than clamp_len. -1
        means no clamping.
      untie_r: bool, whether to untie the biases in attention.
      use_tpu: bool, whether TPUs are used.
      reuse_len: int, the number of tokens in the currect batch to be cached and
        reused in the future.
      ff_activation: str, "relu" or "gelu".
Hongkun Yu's avatar
Hongkun Yu committed
412
      use_cls_mask: bool, whether to introduce cls mask.
Hongkun Yu's avatar
Hongkun Yu committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
      **kwargs: Other parameters.
    """

    super(TransformerXLModel, self).__init__(**kwargs)

    self.n_token = n_token
    self.initializer = initializer
    self.attn_type = attn_type
    self.n_layer = n_layer
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.d_inner = d_inner
    self.ff_activation = ff_activation
    self.untie_r = untie_r
    self.use_tpu = use_tpu
    self.dropout = dropout
    self.dropout_att = dropout_att

    self.mem_len = mem_len
    self.reuse_len = reuse_len
    self.bi_data = bi_data
    self.clamp_len = clamp_len
    self.same_length = same_length
Hongkun Yu's avatar
Hongkun Yu committed
437
    self.use_cls_mask = use_cls_mask
Hongkun Yu's avatar
Hongkun Yu committed
438
439
440

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
441
    self.tf_float = tf.float32
Hongkun Yu's avatar
Hongkun Yu committed
442

Hongkun Yu's avatar
Hongkun Yu committed
443
444
445
446
447
448
    self.embedding_lookup = EmbeddingLookup(
        n_token=self.n_token,
        d_embed=self.d_model,
        initializer=self.initializer,
        dtype=self.tf_float,
        name='word_embedding')
Hongkun Yu's avatar
Hongkun Yu committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

    self.h_dropout = tf.keras.layers.Dropout(rate=self.dropout)
    self.g_dropout = tf.keras.layers.Dropout(rate=self.dropout)

    if self.untie_r:
      self.r_w_bias = (
          self.add_weight(
              'r_w_bias',
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_r_bias = (
          self.add_weight(
              'r_r_bias',
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_s_bias = (
          self.add_weight(
              'r_s_bias',
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
    else:
      self.r_w_bias = (
          self.add_weight(
              'r_w_bias',
              shape=[self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_r_bias = (
          self.add_weight(
              'r_r_bias',
              shape=[self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_s_bias = (
          self.add_weight(
              'r_s_bias', [self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))

    self.seg_embed = self.add_weight(
        'seg_embed', [self.n_layer, 2, self.n_head, self.d_head],
Hongkun Yu's avatar
Hongkun Yu committed
493
494
        dtype=self.tf_float,
        initializer=self.initializer)
Hongkun Yu's avatar
Hongkun Yu committed
495

Hongkun Yu's avatar
Hongkun Yu committed
496
497
    self.mask_emb = self.add_weight(
        'mask_emb/mask_emb', shape=[1, 1, self.d_model], dtype=self.tf_float)
Hongkun Yu's avatar
Hongkun Yu committed
498
499

    self.emb_dropout = tf.keras.layers.Dropout(rate=self.dropout)
Allen Wang's avatar
Allen Wang committed
500
501
    self.fwd_position_embedding = RelativePositionEncoding(self.d_model)
    self.bwd_position_embedding = RelativePositionEncoding(self.d_model)
Hongkun Yu's avatar
Hongkun Yu committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

    self.rel_multihead_layers = []
    self.h_positionwise_ffn_layers = []
    for i in range(self.n_layer):
      self.rel_multihead_layers.append(
          RelativeMultiheadAttention(
              d_model=self.d_model,
              dropout=self.dropout,
              n_head=self.n_head,
              d_head=self.d_head,
              dropout_att=self.dropout_att,
              kernel_initializer=self.initializer,
              name='layer_%d/rel_attn' % (i)))
      self.h_positionwise_ffn_layers.append(
          PositionwiseFF(
              d_model=self.d_model,
              d_inner=self.d_inner,
              dropout=self.dropout,
              kernel_initializer=self.initializer,
Hongkun Yu's avatar
Hongkun Yu committed
521
522
              activation_type=self.ff_activation,
              name='layer_%d/ff' % (i)))
Hongkun Yu's avatar
Hongkun Yu committed
523
524
525
526
527
528
529
530
531
532
533
534

    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout)

    super(TransformerXLModel, self).build(unused_input_shapes)

  def __call__(self,
               inp_k,
               seg_id=None,
               input_mask=None,
               mems=None,
               perm_mask=None,
               target_mapping=None,
535
536
               inp_q=None,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
537
538
    # Uses dict to feed inputs into call() in order to keep mems as a python
    # list.
Hongkun Yu's avatar
Hongkun Yu committed
539
540
541
542
543
544
545
546
547
    inputs = {
        'inp_k': inp_k,
        'seg_id': seg_id,
        'input_mask': input_mask,
        'mems': mems,
        'perm_mask': perm_mask,
        'target_mapping': target_mapping,
        'inp_q': inp_q
    }
548
    return super(TransformerXLModel, self).__call__(inputs, **kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

  def call(self, inputs):
    """Implements call() for the layer."""
    inp_k = inputs['inp_k']
    seg_id = inputs['seg_id']
    input_mask = inputs['input_mask']
    mems = inputs['mems']
    perm_mask = inputs['perm_mask']
    target_mapping = inputs['target_mapping']
    inp_q = inputs['inp_q']

    new_mems = []

    bsz = tf.shape(inp_k)[1]

    qlen = inp_k.shape.as_list()[0]

    mlen = mems[0].shape.as_list()[0] if mems is not None else 0
    klen = mlen + qlen

    ##### Attention mask
    # causal attention mask
    if self.attn_type == 'uni':
      attn_mask = _create_mask(qlen, mlen, self.tf_float, self.same_length)
      # pylint: enable=protected-access
      attn_mask = attn_mask[:, :, None, None]
    elif self.attn_type == 'bi':
      attn_mask = None
    else:
      raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

    # data mask: input mask & perm mask
    if input_mask is not None and perm_mask is not None:
      data_mask = input_mask[None] + perm_mask

    elif input_mask is not None and perm_mask is None:
      data_mask = input_mask[None]
    elif input_mask is None and perm_mask is not None:
      data_mask = perm_mask
    else:
      data_mask = None

    if data_mask is not None:
      # all mems can be attended to
      mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, bsz],
                           dtype=self.tf_float)
      data_mask = tf.concat([mems_mask, data_mask], 1)
      if attn_mask is None:
        attn_mask = data_mask[:, :, :, None]
      else:
        attn_mask += data_mask[:, :, :, None]

    if attn_mask is not None:
      attn_mask = tf.cast(attn_mask > 0, dtype=self.tf_float)

    if attn_mask is not None:
      non_tgt_mask = -tf.eye(qlen, dtype=self.tf_float)
Hongkun Yu's avatar
Hongkun Yu committed
606
607
608
609
      non_tgt_mask = tf.concat(
          [tf.zeros([qlen, mlen], dtype=self.tf_float), non_tgt_mask], axis=-1)
      non_tgt_mask = tf.cast(
          (attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=self.tf_float)
Hongkun Yu's avatar
Hongkun Yu committed
610
611
612
    else:
      non_tgt_mask = None

Hongkun Yu's avatar
Hongkun Yu committed
613
    word_emb_k = self.embedding_lookup(inp_k)
Hongkun Yu's avatar
Hongkun Yu committed
614
615
616
617
618
619
620
621
622
623

    if inp_q is not None:
      if target_mapping is not None:
        word_emb_q = tf.tile(self.mask_emb,
                             [tf.shape(target_mapping)[0], bsz, 1])
      else:
        inp_q_ext = inp_q[:, :, None]
        word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k

    output_h = self.h_dropout(word_emb_k)
624
    output_g = None
Hongkun Yu's avatar
Hongkun Yu committed
625
626
627
628
629
630
631
632
633
634
    if inp_q is not None:
      output_g = self.g_dropout(word_emb_q)

    ##### Segment embedding
    if seg_id is not None:

      # Convert `seg_id` to one-hot `seg_mat`

      mem_pad = tf.zeros([mlen, bsz], dtype=tf.int32)

Hongkun Yu's avatar
Hongkun Yu committed
635
      cat_id = tf.concat([mem_pad, seg_id], 0)
Hongkun Yu's avatar
Hongkun Yu committed
636

Hongkun Yu's avatar
Hongkun Yu committed
637
638
639
640
641
642
643
644
645
646
      if self.use_cls_mask:
        # `1` indicates not in the same segment [qlen x klen x bsz]
        # seg_id: [qlen x bsz] & cat_id: [klen x bsz]
        cls_mat = tf.logical_or(
            tf.equal(seg_id, tf.constant([data_utils.SEG_ID_CLS]))[:, None],
            tf.equal(cat_id, tf.constant([data_utils.SEG_ID_CLS]))[None, :])
        seg_mat = tf.equal(seg_id[:, None], cat_id[None, :])
        seg_mat = tf.logical_or(cls_mat, seg_mat)
      else:
        seg_mat = tf.logical_not(tf.equal(seg_id[:, None], cat_id[None, :]))
Hongkun Yu's avatar
Hongkun Yu committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    else:
      seg_mat = None

    dtype = self.tf_float
    freq_seq = tf.range(0, self.d_model, 2.0)
    if dtype is not None and dtype != tf.float32:
      freq_seq = tf.cast(freq_seq, dtype=self.dtype)

    if self.attn_type == 'bi':
      beg, end = klen, -qlen
    elif self.attn_type == 'uni':
      beg, end = klen, -1
    else:
      raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

    if self.bi_data:
      fwd_pos_seq = tf.range(beg, end, -1.0)
      bwd_pos_seq = tf.range(-beg, -end, 1.0)

      if dtype is not None and dtype != tf.float32:
        fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
        bwd_pos_seq = tf.cast(bwd_pos_seq, dtype=dtype)

      if self.clamp_len > 0:
        fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
                                       self.clamp_len)
        bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len,
                                       self.clamp_len)

      if bsz is not None:
Hongkun Yu's avatar
Hongkun Yu committed
677
678
        fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz // 2)
        bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, bsz // 2)
Hongkun Yu's avatar
Hongkun Yu committed
679
680
681
682
683
684
685
686
687
688
      else:
        fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, None)
        bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, None)

      pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
    else:
      fwd_pos_seq = tf.range(beg, end, -1.0)
      if dtype is not None and dtype != tf.float32:
        fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
      if self.clamp_len > 0:
Hongkun Yu's avatar
Hongkun Yu committed
689
690
        fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
                                       self.lamp_len)
Hongkun Yu's avatar
Hongkun Yu committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

      pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz)

    pos_emb = self.emb_dropout(pos_emb)

    if mems is None:
      mems = [None] * self.n_layer
    for i in range(self.n_layer):
      # cache new mems
      new_mems.append(
          _cache_mem(output_h, mems[i], self.mem_len, self.reuse_len))
      # pylint: enable=protected-access

      # segment bias
      if seg_id is None:
        r_s_bias_i = None
        seg_embed_i = None
      else:
        r_s_bias_i = self.r_s_bias if not self.untie_r else self.r_s_bias[i]
        seg_embed_i = self.seg_embed[i]

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
      ffn_layer = self.h_positionwise_ffn_layers[i]
      attention_layer = self.rel_multihead_layers[i]
      output_h, output_g = attention_layer(
          h=output_h,
          g=output_g,
          r=pos_emb,
          r_w_bias=self.r_w_bias if not self.untie_r else self.r_w_bias[i],
          r_r_bias=self.r_r_bias if not self.untie_r else self.r_r_bias[i],
          seg_mat=seg_mat,
          r_s_bias=r_s_bias_i,
          seg_embed=seg_embed_i,
          attn_mask_h=non_tgt_mask,
          attn_mask_g=attn_mask,
          mems=mems[i],
          target_mapping=target_mapping)
      output_h = ffn_layer(output_h)
      if output_g is not None:
        output_g = ffn_layer(output_g)
Hongkun Yu's avatar
Hongkun Yu committed
730
731

    if inp_q is not None:
Hongkun Yu's avatar
Hongkun Yu committed
732
      output = output_g
Hongkun Yu's avatar
Hongkun Yu committed
733
    else:
Hongkun Yu's avatar
Hongkun Yu committed
734
      output = output_h
Hongkun Yu's avatar
Hongkun Yu committed
735
736
737
738
739
740
741
742
743
744
745

    return output, new_mems, None


class PretrainingXLNetModel(tf.keras.Model):
  """XLNet keras model combined with pretraining LM loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

Hongkun Yu's avatar
Hongkun Yu committed
746
  def __init__(self, use_proj, xlnet_config, run_config, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    super(PretrainingXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)

    self.transformerxl_model = TransformerXLModel(
        n_token=self.xlnet_config.n_token,
        initializer=self.initializer,
        attn_type='bi',
        n_layer=self.xlnet_config.n_layer,
        d_model=self.xlnet_config.d_model,
        n_head=self.xlnet_config.n_head,
        d_head=self.xlnet_config.d_head,
        d_inner=self.xlnet_config.d_inner,
        ff_activation=self.xlnet_config.ff_activation,
        untie_r=self.xlnet_config.untie_r,
        is_training=self.run_config.is_training,
        use_tpu=self.run_config.use_tpu,
        dropout=self.run_config.dropout,
        dropout_att=self.run_config.dropout_att,
        mem_len=self.run_config.mem_len,
        reuse_len=self.run_config.reuse_len,
        bi_data=self.run_config.bi_data,
        clamp_len=self.run_config.clamp_len,
        same_length=self.run_config.same_length,
Hongkun Yu's avatar
Hongkun Yu committed
772
        use_cls_mask=self.run_config.use_cls_mask,
Hongkun Yu's avatar
Hongkun Yu committed
773
        name='transformer')
Hongkun Yu's avatar
Hongkun Yu committed
774
775
776
777
778
779
780
781
782
    self.lmloss_layer = LMLossLayer(
        n_token=self.xlnet_config.n_token,
        d_model=self.xlnet_config.d_model,
        initializer=self.initializer,
        tie_weight=True,
        bi_data=self.run_config.bi_data,
        use_tpu=self.run_config.use_tpu,
        use_proj=use_proj,
        name='lm_loss')
Hongkun Yu's avatar
Hongkun Yu committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

  def call(self, features):
    """Implements call() for the layer."""

    input_ids = tf.transpose(features['input_k'], [1, 0])
    inp_q = tf.transpose(features['input_q'], [1, 0])

    seg_ids = tf.transpose(features['seg_id'], [1, 0])

    perm_mask = tf.transpose(features['perm_mask'], [1, 2, 0])

    target_mapping = tf.transpose(features['target_mapping'], [1, 2, 0])

    # target for LM loss
    target = tf.transpose(features['target'], [1, 0])

    # target mask for LM loss
    tgt_mask = tf.transpose(features['target_mask'], [1, 0])

Hongkun Yu's avatar
Hongkun Yu committed
802
803
804
    mems = features.get('mems', None)

    transformerxl_output, self.new_mems, self.lookup_table = self.transformerxl_model(
Hongkun Yu's avatar
Hongkun Yu committed
805
        input_ids,
Hongkun Yu's avatar
Hongkun Yu committed
806
        seg_id=seg_ids,
Hongkun Yu's avatar
Hongkun Yu committed
807
        input_mask=None,
Hongkun Yu's avatar
Hongkun Yu committed
808
809
810
811
        mems=mems,
        perm_mask=perm_mask,
        target_mapping=target_mapping,
        inp_q=inp_q)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
812
    lm_loss, _ = self.lmloss_layer(
Hongkun Yu's avatar
Hongkun Yu committed
813
        hidden=transformerxl_output,
Hongkun Yu's avatar
Hongkun Yu committed
814
815
816
817
        target=target,
        lookup_table=self.transformerxl_model.embedding_lookup.lookup_table,
        target_mask=tgt_mask)
    self.add_loss(lm_loss)
Hongkun Yu's avatar
Hongkun Yu committed
818
    return self.new_mems, transformerxl_output
Hongkun Yu's avatar
Hongkun Yu committed
819
820
821
822
823
824
825
826
827


class ClassificationXLNetModel(tf.keras.Model):
  """XLNet keras model combined with classification loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

Hongkun Yu's avatar
Hongkun Yu committed
828
  def __init__(self, xlnet_config, run_config, n_class, summary_type, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    super(ClassificationXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)

    self.transformerxl_model = TransformerXLModel(
        n_token=self.xlnet_config.n_token,
        initializer=self.initializer,
        attn_type='bi',
        n_layer=self.xlnet_config.n_layer,
        d_model=self.xlnet_config.d_model,
        n_head=self.xlnet_config.n_head,
        d_head=self.xlnet_config.d_head,
        d_inner=self.xlnet_config.d_inner,
        ff_activation=self.xlnet_config.ff_activation,
        untie_r=self.xlnet_config.untie_r,
        is_training=self.run_config.is_training,
        use_tpu=self.run_config.use_tpu,
        dropout=self.run_config.dropout,
        dropout_att=self.run_config.dropout_att,
        mem_len=self.run_config.mem_len,
        reuse_len=self.run_config.reuse_len,
        bi_data=self.run_config.bi_data,
        clamp_len=self.run_config.clamp_len,
        same_length=self.run_config.same_length,
        name='transformer')

    self.summarization_layer = Summarization(
        d_model=self.xlnet_config.d_model,
        n_head=self.xlnet_config.n_head,
        d_head=self.xlnet_config.d_head,
        dropout=self.run_config.dropout,
        dropout_att=self.run_config.dropout_att,
        initializer=self.initializer,
        use_proj=True,
Hongkun Yu's avatar
Hongkun Yu committed
864
        summary_type=summary_type,
Hongkun Yu's avatar
Hongkun Yu committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        name='sequence_summary')

    self.cl_loss_layer = ClassificationLossLayer(
        n_class=n_class, initializer=self.initializer, name='classification')

  def call(self, features):
    """Implements call() for the layer."""
    bsz_per_core = tf.shape(features['input_ids'])[0]

    input_ids = tf.transpose(features['input_ids'], [1, 0])
    seg_ids = tf.transpose(features['segment_ids'], [1, 0])
    input_mask = tf.transpose(features['input_mask'], [1, 0])

    label = tf.reshape(features['label_ids'], [bsz_per_core])

Hongkun Yu's avatar
Hongkun Yu committed
880
    mems = features.get('mems', None)
Hongkun Yu's avatar
Hongkun Yu committed
881

Hongkun Yu's avatar
Hongkun Yu committed
882
    transformerxl_output, new_mems, self.lookup_table = (
Hongkun Yu's avatar
Hongkun Yu committed
883
        self.transformerxl_model(input_ids, seg_ids, input_mask, mems))
Hongkun Yu's avatar
Hongkun Yu committed
884

Hongkun Yu's avatar
Hongkun Yu committed
885
    summary = self.summarization_layer(transformerxl_output)
Hongkun Yu's avatar
Hongkun Yu committed
886
    per_example_loss, logits = self.cl_loss_layer(hidden=summary, labels=label)
Hongkun Yu's avatar
Hongkun Yu committed
887
    self.add_loss(tf.keras.backend.mean(per_example_loss))
Hongkun Yu's avatar
Hongkun Yu committed
888
    return new_mems, logits
Hongkun Yu's avatar
Hongkun Yu committed
889
890
891
892
893


class LMLossLayer(tf.keras.layers.Layer):
  """Layer computing cross entropy loss for language modeling."""

Hongkun Yu's avatar
Hongkun Yu committed
894
895
896
897
898
899
900
901
902
  def __init__(self,
               n_token,
               d_model,
               initializer,
               tie_weight=False,
               bi_data=True,
               use_tpu=False,
               use_proj=False,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
903
904
905
906
907
908
909
    """Constructs LMLoss layer.

    Args:
      n_token: Number of tokens in vocabulary.
      d_model: The dimension of model hidden state.
      initializer: Initializer used for parameters.
      tie_weight: Whether to share weights between embedding lookup layer and
Hongkun Yu's avatar
Hongkun Yu committed
910
911
912
        next-token prediction layer.
      bi_data: Whether to use bidirectional input pipeline. Usually set to True
        during pretraining and False during finetuning.
Hongkun Yu's avatar
Hongkun Yu committed
913
      use_tpu: bool, whether to use TPU.
Hongkun Yu's avatar
Hongkun Yu committed
914
      use_proj: bool, whether to add a projection layer before LM prediction.
Hongkun Yu's avatar
Hongkun Yu committed
915
916
917
918
919
920
921
922
923
924
      **kwargs: Other parameters.
    """
    super(LMLossLayer, self).__init__(**kwargs)
    self.n_token = n_token
    self.d_model = d_model
    self.initializer = initializer

    self.tie_weight = tie_weight
    self.bi_data = bi_data
    self.use_tpu = use_tpu
Hongkun Yu's avatar
Hongkun Yu committed
925
    self.use_proj = use_proj
Hongkun Yu's avatar
Hongkun Yu committed
926
927
928

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
929
930
931
932
933
    if self.use_proj:
      self.proj_layer = tf.keras.layers.Dense(
          units=self.d_model,
          kernel_initializer=self.initializer,
          activation=gelu,
934
          name='lm_projection/dense')
Hongkun Yu's avatar
Hongkun Yu committed
935
936
      self.proj_layer_norm = tf.keras.layers.LayerNormalization(
          axis=-1, epsilon=1e-12, name='lm_projection/LayerNorm')
Hongkun Yu's avatar
Hongkun Yu committed
937
    if not self.tie_weight:
Hongkun Yu's avatar
Hongkun Yu committed
938
939
940
941
      self.softmax_w = self.add_weight(
          'weight',
          shape=[self.n_token, self.d_model],
          initializer=self.initializer)
Hongkun Yu's avatar
Hongkun Yu committed
942

Hongkun Yu's avatar
Hongkun Yu committed
943
944
    self.softmax_b = self.add_weight(
        'bias', shape=[self.n_token], initializer=tf.zeros_initializer())
Hongkun Yu's avatar
Hongkun Yu committed
945
946
947

    super(LMLossLayer, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
948
  def call(self, hidden, target, lookup_table, target_mask):
Hongkun Yu's avatar
Hongkun Yu committed
949
    """Implements call() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
950
951
    if self.use_proj:
      hidden = self.proj_layer_norm(self.proj_layer(hidden))
Hongkun Yu's avatar
Hongkun Yu committed
952
953
954
955
956
957
958
959
960
    if self.tie_weight:
      logits = tf.einsum('ibd,nd->ibn', hidden, lookup_table) + self.softmax_b
    else:
      logits = tf.einsum('ibd,nd->ibn', hidden, self.softmax_w) + self.softmax_b

    if self.use_tpu:
      one_hot_target = tf.one_hot(target, self.n_token, dtype=logits.dtype)
      loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)
    else:
Hongkun Yu's avatar
Hongkun Yu committed
961
962
      loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
          labels=target, logits=logits)
Hongkun Yu's avatar
Hongkun Yu committed
963

Hongkun Yu's avatar
Hongkun Yu committed
964
    total_loss = tf.reduce_sum(loss * target_mask) / tf.reduce_sum(target_mask)
Hongkun Yu's avatar
Hongkun Yu committed
965

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
966
    return total_loss, logits
Hongkun Yu's avatar
Hongkun Yu committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019


class Summarization(tf.keras.layers.Layer):
  """The layer to pool the output from XLNet model into a vector."""

  def __init__(self,
               d_model,
               n_head,
               d_head,
               dropout,
               dropout_att,
               initializer,
               use_proj=True,
               summary_type='last',
               **kwargs):
    """Constructs Summarization layer.

    Args:
      d_model: int, the dimension of model hidden state.
      n_head: int, the number of attention heads.
      d_head: int, the dimension size of each attention head.
      dropout: float, dropout rate.
      dropout_att: float, dropout rate on attention probabilities.
      initializer: Initializer used for parameters.
      use_proj: bool, whether to use projection layer for summarization.
      summary_type: Method used to summarize a sequence into a compact vector.
      **kwargs: Other parameters.
    """
    super(Summarization, self).__init__(**kwargs)
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.initializer = initializer

    self.dropout = dropout
    self.dropout_att = dropout_att
    self.use_proj = use_proj
    self.summary_type = summary_type

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    if self.use_proj:
      self.proj_layer = tf.keras.layers.Dense(
          units=self.d_model,
          kernel_initializer=self.initializer,
          activation=tf.nn.tanh,
          name='summary')
    self.dropout_layer = tf.keras.layers.Dropout(rate=self.dropout)

    super(Summarization, self).build(unused_input_shapes)

  def call(self, inputs):
    """Implements call() for the layer."""
Hongkun Yu's avatar
Hongkun Yu committed
1020
1021
1022
1023
1024
1025
    if self.summary_type == 'last':
      summary = inputs[-1]
    elif self.summary_type == 'first':
      summary = inputs[0]
    else:
      raise ValueError('Invalid summary type provided: %s' % self.summary_type)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1026
1027
    if self.use_proj:
      summary = self.proj_layer(summary)
Hongkun Yu's avatar
Hongkun Yu committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    summary = self.dropout_layer(summary)
    return summary


class ClassificationLossLayer(tf.keras.layers.Layer):
  """Layer computing cross entropy loss for classification task."""

  def __init__(self, n_class, initializer, **kwargs):
    """Constructs Summarization layer.

    Args:
      n_class: Number of tokens in vocabulary.
      initializer: Initializer used for parameters.
      **kwargs: Other parameters.
    """
    super(ClassificationLossLayer, self).__init__(**kwargs)

    self.n_class = n_class
    self.initializer = initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.proj_layer = tf.keras.layers.Dense(
        units=self.n_class, kernel_initializer=self.initializer, name='logit')

    super(ClassificationLossLayer, self).build(unused_input_shapes)

Hongkun Yu's avatar
Hongkun Yu committed
1055
  def call(self, hidden, labels):
Hongkun Yu's avatar
Hongkun Yu committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    """Implements call() for the layer."""

    logits = self.proj_layer(hidden)
    one_hot_target = tf.one_hot(labels, self.n_class, dtype=hidden.dtype)  # pytype: disable=attribute-error
    loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)

    return loss, logits


class QAXLNetModel(tf.keras.Model):
  """XLNet keras model combined with question answering loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

  def __init__(self, xlnet_config, run_config, start_n_top, end_n_top,
               **kwargs):
    super(QAXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)

    self.transformerxl_model = TransformerXLModel(
        n_token=self.xlnet_config.n_token,
        initializer=self.initializer,
        attn_type='bi',
        n_layer=self.xlnet_config.n_layer,
        d_model=self.xlnet_config.d_model,
        n_head=self.xlnet_config.n_head,
        d_head=self.xlnet_config.d_head,
        d_inner=self.xlnet_config.d_inner,
        ff_activation=self.xlnet_config.ff_activation,
        untie_r=self.xlnet_config.untie_r,
        is_training=self.run_config.is_training,
        use_tpu=self.run_config.use_tpu,
        dropout=self.run_config.dropout,
        dropout_att=self.run_config.dropout_att,
        mem_len=self.run_config.mem_len,
        reuse_len=self.run_config.reuse_len,
        bi_data=self.run_config.bi_data,
        clamp_len=self.run_config.clamp_len,
        same_length=self.run_config.same_length,
        name='transformer')

    self.qa_loss_layer = QALossLayer(
        d_model=self.xlnet_config.d_model,
        start_n_top=start_n_top,
        end_n_top=end_n_top,
        initializer=self.initializer,
        dropout=self.run_config.dropout)

  def call(self, features, training=False):
    """Implements call() for the layer."""

    input_ids = tf.transpose(features['input_ids'], [1, 0])
    seg_ids = tf.transpose(features['segment_ids'], [1, 0])
    input_mask = tf.transpose(features['input_mask'], [1, 0])

    cls_index = tf.reshape(features['cls_index'], [-1])
    p_mask = features['p_mask']

Hongkun Yu's avatar
Hongkun Yu committed
1118
    transformerxl_output, new_mems, self.lookup_table = (
Hongkun Yu's avatar
Hongkun Yu committed
1119
        self.transformerxl_model(input_ids, seg_ids, input_mask))
Hongkun Yu's avatar
Hongkun Yu committed
1120
1121
1122

    if training:
      loss, logits = self.qa_loss_layer(
Hongkun Yu's avatar
Hongkun Yu committed
1123
          hidden=transformerxl_output,
Hongkun Yu's avatar
Hongkun Yu committed
1124
1125
1126
1127
1128
1129
          p_mask=p_mask,
          cls_index=cls_index,
          start_positions=features['start_positions'],
          end_positions=features['end_positions'],
          is_impossible=features['is_impossible'])
      self.add_loss(loss)
Hongkun Yu's avatar
Hongkun Yu committed
1130
      return new_mems, logits
Hongkun Yu's avatar
Hongkun Yu committed
1131
1132
    else:
      results = self.qa_loss_layer(
Hongkun Yu's avatar
Hongkun Yu committed
1133
          hidden=transformerxl_output, p_mask=p_mask, cls_index=cls_index)
Hongkun Yu's avatar
Hongkun Yu committed
1134
1135
1136
1137
      return results


class QALossLayer(tf.keras.layers.Layer):
Hongkun Yu's avatar
Hongkun Yu committed
1138
  """Layer computing position and regression loss for question answering task."""
Hongkun Yu's avatar
Hongkun Yu committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

  def __init__(self, d_model, start_n_top, end_n_top, initializer, dropout,
               **kwargs):
    """Constructs Summarization layer.

    Args:
      d_model: Int, the hidden size.
      start_n_top: Beam size for span start.
      end_n_top: Beam size for span end.
      initializer: Initializer used for parameters.
      dropout: float, dropout rate.
      **kwargs: Other parameters.
    """
    super(QALossLayer, self).__init__(**kwargs)
    self.d_model = d_model
    self.start_n_top = start_n_top
    self.end_n_top = end_n_top
    self.initializer = initializer
    self.dropout = dropout

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.start_logits_proj_layer = tf.keras.layers.Dense(
        units=1, kernel_initializer=self.initializer, name='start_logits/dense')
    self.end_logits_proj_layer0 = tf.keras.layers.Dense(
        units=self.d_model,
        kernel_initializer=self.initializer,
        activation=tf.nn.tanh,
        name='end_logits/dense_0')
    self.end_logits_proj_layer1 = tf.keras.layers.Dense(
        units=1, kernel_initializer=self.initializer, name='end_logits/dense_1')
    self.end_logits_layer_norm = tf.keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12, name='end_logits/LayerNorm')
    self.answer_class_proj_layer0 = tf.keras.layers.Dense(
        units=self.d_model,
        kernel_initializer=self.initializer,
        activation=tf.nn.tanh,
        name='answer_class/dense_0')
    self.answer_class_proj_layer1 = tf.keras.layers.Dense(
        units=1,
        kernel_initializer=self.initializer,
        use_bias=False,
        name='answer_class/dense_1')
    self.ans_feature_dropout = tf.keras.layers.Dropout(rate=self.dropout)
    super(QALossLayer, self).build(unused_input_shapes)

  def __call__(self, hidden, p_mask, cls_index, **kwargs):
    return super(QALossLayer, self).__call__(
        (hidden, p_mask, cls_index, kwargs))

  def call(self, inputs, training=False):
    """Implements call() for the layer."""
    hidden, p_mask, cls_index, kwargs = inputs
    return_dict = {}
    seq_len = tf.shape(hidden)[0]

    start_logits = self.start_logits_proj_layer(hidden)
    start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
    start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
    start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
    if training:
      start_positions = kwargs['start_positions']
      end_positions = kwargs['end_positions']
      is_impossible = kwargs['is_impossible']
      start_positions = tf.reshape(start_positions, [-1])
      start_index = tf.one_hot(
          start_positions, depth=seq_len, axis=-1, dtype=tf.float32)
      start_features = tf.einsum('lbh,bl->bh', hidden, start_index)
      start_features = tf.tile(start_features[None], [seq_len, 1, 1])
      end_logits = self.end_logits_proj_layer0(
          tf.concat([hidden, start_features], axis=-1))

      end_logits = self.end_logits_layer_norm(end_logits)

      end_logits = self.end_logits_proj_layer1(end_logits)
      end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
      end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
    else:
      # during inference, compute the end logits based on beam search

      start_top_log_probs, start_top_index = tf.nn.top_k(
          start_log_probs, k=self.start_n_top)
      start_index = tf.one_hot(
          start_top_index, depth=seq_len, axis=-1, dtype=tf.float32)
      start_features = tf.einsum('lbh,bkl->bkh', hidden, start_index)
      end_input = tf.tile(hidden[:, :, None], [1, 1, self.start_n_top, 1])
      start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1])
      end_input = tf.concat([end_input, start_features], axis=-1)
      end_logits = self.end_logits_proj_layer0(end_input)
      end_logits = tf.reshape(end_logits, [seq_len, -1, self.d_model])
      end_logits = self.end_logits_layer_norm(end_logits)

      end_logits = tf.reshape(end_logits,
                              [seq_len, -1, self.start_n_top, self.d_model])

      end_logits = self.end_logits_proj_layer1(end_logits)
      end_logits = tf.reshape(end_logits, [seq_len, -1, self.start_n_top])
      end_logits = tf.transpose(end_logits, [1, 2, 0])
      end_logits_masked = end_logits * (
          1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
      end_top_log_probs, end_top_index = tf.nn.top_k(
          end_log_probs, k=self.end_n_top)
      end_top_log_probs = tf.reshape(end_top_log_probs,
                                     [-1, self.start_n_top * self.end_n_top])
      end_top_index = tf.reshape(end_top_index,
                                 [-1, self.start_n_top * self.end_n_top])

    if training:
      return_dict['start_log_probs'] = start_log_probs
      return_dict['end_log_probs'] = end_log_probs
    else:
      return_dict['start_top_log_probs'] = start_top_log_probs
      return_dict['start_top_index'] = start_top_index
      return_dict['end_top_log_probs'] = end_top_log_probs
      return_dict['end_top_index'] = end_top_index
    # an additional layer to predict answerability

    # get the representation of CLS
    cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
    cls_feature = tf.einsum('lbh,bl->bh', hidden, cls_index)

    # get the representation of START
    start_p = tf.nn.softmax(start_logits_masked, axis=-1, name='softmax_start')
    start_feature = tf.einsum('lbh,bl->bh', hidden, start_p)

    ans_feature = tf.concat([start_feature, cls_feature], -1)
    ans_feature = self.answer_class_proj_layer0(ans_feature)
    ans_feature = self.ans_feature_dropout(ans_feature)
    cls_logits = self.answer_class_proj_layer1(ans_feature)
    cls_logits = tf.squeeze(cls_logits, -1)
    return_dict['cls_logits'] = cls_logits

    if not training:
      return return_dict

    def compute_loss(log_probs, positions):
      one_hot_positions = tf.one_hot(positions, depth=seq_len, dtype=tf.float32)

      loss = -tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
      loss = tf.reduce_mean(loss)
      return loss

    start_loss = compute_loss(start_log_probs, start_positions)
    end_loss = compute_loss(end_log_probs, end_positions)

    total_loss = (start_loss + end_loss) * 0.5

    is_impossible = tf.reshape(is_impossible, [-1])
    regression_loss = tf.nn.sigmoid_cross_entropy_with_logits(
        labels=is_impossible, logits=cls_logits)
    regression_loss = tf.reduce_mean(regression_loss)

    total_loss += regression_loss * 0.5
    return total_loss, cls_logits