Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
569e3d83
Commit
569e3d83
authored
Sep 28, 2020
by
Allen Wang
Committed by
A. Unique TensorFlower
Sep 28, 2020
Browse files
Internal change
PiperOrigin-RevId: 334233893
parent
63620f4c
Changes
5
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
264 additions
and
321 deletions
+264
-321
official/nlp/xlnet/data_utils.py
official/nlp/xlnet/data_utils.py
+2
-5
official/nlp/xlnet/run_classifier.py
official/nlp/xlnet/run_classifier.py
+1
-1
official/nlp/xlnet/training_utils.py
official/nlp/xlnet/training_utils.py
+1
-1
official/nlp/xlnet/xlnet_modeling.py
official/nlp/xlnet/xlnet_modeling.py
+260
-261
official/nlp/xlnet/xlnet_modeling_test.py
official/nlp/xlnet/xlnet_modeling_test.py
+0
-53
No files found.
official/nlp/xlnet/data_utils.py
View file @
569e3d83
...
@@ -95,7 +95,6 @@ def file_based_input_fn_builder(input_file, name_to_features, batch_size,
...
@@ -95,7 +95,6 @@ def file_based_input_fn_builder(input_file, name_to_features, batch_size,
d
=
d
.
interleave
(
d
=
d
.
interleave
(
tf
.
data
.
TFRecordDataset
,
tf
.
data
.
TFRecordDataset
,
sloppy
=
is_training
,
cycle_length
=
cycle_length
)
cycle_length
=
cycle_length
)
if
is_training
:
if
is_training
:
...
@@ -495,7 +494,7 @@ def create_pretrain_dataset(file_names,
...
@@ -495,7 +494,7 @@ def create_pretrain_dataset(file_names,
# reshape back to fixed shape
# reshape back to fixed shape
example
[
"perm_mask"
]
=
tf
.
reshape
(
perm_mask
,
[
seq_len
,
seq_len
])
example
[
"perm_mask"
]
=
tf
.
reshape
(
perm_mask
,
[
seq_len
,
seq_len
])
example
[
"input_
k
"
]
=
tf
.
reshape
(
input_k
,
[
seq_len
])
example
[
"input_
ids
"
]
=
tf
.
reshape
(
input_k
,
[
seq_len
])
example
[
"input_q"
]
=
tf
.
reshape
(
input_q
,
[
seq_len
])
example
[
"input_q"
]
=
tf
.
reshape
(
input_q
,
[
seq_len
])
# Directly use raw inputs as the target
# Directly use raw inputs as the target
...
@@ -718,11 +717,9 @@ def parse_files_to_dataset(parser,
...
@@ -718,11 +717,9 @@ def parse_files_to_dataset(parser,
cycle_length
=
min
(
8
,
len
(
file_paths
))
cycle_length
=
min
(
8
,
len
(
file_paths
))
logging
.
info
(
"Interleave %d files"
,
cycle_length
)
logging
.
info
(
"Interleave %d files"
,
cycle_length
)
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
dataset
=
dataset
.
apply
(
dataset
=
dataset
.
apply
(
tf
.
data
.
experimental
.
parallel_interleave
(
tf
.
data
.
experimental
.
parallel_interleave
(
tf
.
data
.
TFRecordDataset
,
sloppy
=
True
,
cycle_length
=
cycle_length
))
tf
.
data
.
TFRecordDataset
,
cycle_length
=
cycle_length
))
buffer_size
=
2048
buffer_size
=
2048
logging
.
info
(
"Perform sample-level shuffle with size %d"
,
buffer_size
)
logging
.
info
(
"Perform sample-level shuffle with size %d"
,
buffer_size
)
dataset
=
dataset
.
shuffle
(
buffer_size
=
buffer_size
)
dataset
=
dataset
.
shuffle
(
buffer_size
=
buffer_size
)
...
...
official/nlp/xlnet/run_classifier.py
View file @
569e3d83
...
@@ -155,7 +155,7 @@ def main(unused_argv):
...
@@ -155,7 +155,7 @@ def main(unused_argv):
adam_epsilon
=
FLAGS
.
adam_epsilon
)
adam_epsilon
=
FLAGS
.
adam_epsilon
)
model_config
=
xlnet_config
.
XLNetConfig
(
FLAGS
)
model_config
=
xlnet_config
.
XLNetConfig
(
FLAGS
)
run_config
=
xlnet_config
.
create_run_config
(
True
,
False
,
FLAGS
)
run_config
=
xlnet_config
.
create_run_config
(
True
,
False
,
FLAGS
)
model_fn
=
functools
.
partial
(
get_
classification
xlnet
_model
,
model_config
,
model_fn
=
functools
.
partial
(
modeling
.
classification_model
,
model_config
,
run_config
,
FLAGS
.
n_class
,
FLAGS
.
summary_type
)
run_config
,
FLAGS
.
n_class
,
FLAGS
.
summary_type
)
input_meta_data
=
{}
input_meta_data
=
{}
input_meta_data
[
"d_model"
]
=
FLAGS
.
d_model
input_meta_data
[
"d_model"
]
=
FLAGS
.
d_model
...
...
official/nlp/xlnet/training_utils.py
View file @
569e3d83
...
@@ -213,8 +213,8 @@ def train(
...
@@ -213,8 +213,8 @@ def train(
if
input_meta_data
[
"mem_len"
]
>
0
:
if
input_meta_data
[
"mem_len"
]
>
0
:
for
_
in
range
(
input_meta_data
[
"n_layer"
]):
for
_
in
range
(
input_meta_data
[
"n_layer"
]):
zeros
=
tf
.
zeros
([
zeros
=
tf
.
zeros
([
input_meta_data
[
"mem_len"
],
input_meta_data
[
"batch_size_per_core"
],
input_meta_data
[
"batch_size_per_core"
],
input_meta_data
[
"mem_len"
],
input_meta_data
[
"d_model"
]
input_meta_data
[
"d_model"
]
],
],
dtype
=
tf
.
float32
)
dtype
=
tf
.
float32
)
...
...
official/nlp/xlnet/xlnet_modeling.py
View file @
569e3d83
This diff is collapsed.
Click to expand it.
official/nlp/xlnet/xlnet_modeling_test.py
deleted
100644 → 0
View file @
63620f4c
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
absl
import
logging
import
numpy
as
np
import
tensorflow
as
tf
from
official.nlp.xlnet
import
xlnet_modeling
class
PositionalEmbeddingLayerTest
(
tf
.
test
.
TestCase
):
def
test_positional_embedding
(
self
):
"""A low-dimensional example is tested.
With len(pos_seq)=2 and d_model=4:
pos_seq = [[1.], [0.]]
inv_freq = [1., 0.01]
pos_seq x inv_freq = [[1, 0.01], [0., 0.]]
pos_emb = [[sin(1.), sin(0.01), cos(1.), cos(0.01)],
[sin(0.), sin(0.), cos(0.), cos(0.)]]
= [[0.84147096, 0.00999983, 0.54030228, 0.99994999],
[0., 0., 1., 1.]]
"""
target
=
np
.
array
([[[
0.84147096
,
0.00999983
,
0.54030228
,
0.99994999
]],
[[
0.
,
0.
,
1.
,
1.
]]])
d_model
=
4
pos_seq
=
tf
.
range
(
1
,
-
1
,
-
1.0
)
# [1., 0.]
pos_emb_layer
=
xlnet_modeling
.
RelativePositionEncoding
(
d_model
)
pos_emb
=
pos_emb_layer
(
pos_seq
,
batch_size
=
None
).
numpy
().
astype
(
float
)
logging
.
info
(
pos_emb
)
self
.
assertAllClose
(
pos_emb
,
target
)
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment