Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
b045ce7d
Commit
b045ce7d
authored
Oct 03, 2019
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Oct 03, 2019
Browse files
Internal change
PiperOrigin-RevId: 272777104
parent
0f176f6f
Changes
5
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
145 additions
and
150 deletions
+145
-150
official/nlp/xlnet/data_utils.py
official/nlp/xlnet/data_utils.py
+4
-0
official/nlp/xlnet/run_pretrain.py
official/nlp/xlnet/run_pretrain.py
+6
-4
official/nlp/xlnet/squad_utils.py
official/nlp/xlnet/squad_utils.py
+6
-11
official/nlp/xlnet_config.py
official/nlp/xlnet_config.py
+5
-5
official/nlp/xlnet_modeling.py
official/nlp/xlnet_modeling.py
+124
-130
No files found.
official/nlp/xlnet/data_utils.py
View file @
b045ce7d
...
@@ -43,6 +43,10 @@ CLS_ID = special_symbols["<cls>"]
...
@@ -43,6 +43,10 @@ CLS_ID = special_symbols["<cls>"]
SEP_ID
=
special_symbols
[
"<sep>"
]
SEP_ID
=
special_symbols
[
"<sep>"
]
MASK_ID
=
special_symbols
[
"<mask>"
]
MASK_ID
=
special_symbols
[
"<mask>"
]
EOD_ID
=
special_symbols
[
"<eod>"
]
EOD_ID
=
special_symbols
[
"<eod>"
]
SEG_ID_P
=
0
SEG_ID_Q
=
1
SEG_ID_CLS
=
2
SEG_ID_PAD
=
3
def
file_based_input_fn_builder
(
input_file
,
name_to_features
,
batch_size
,
def
file_based_input_fn_builder
(
input_file
,
name_to_features
,
batch_size
,
...
...
official/nlp/xlnet/run_pretrain.py
View file @
b045ce7d
...
@@ -48,8 +48,11 @@ FLAGS = flags.FLAGS
...
@@ -48,8 +48,11 @@ FLAGS = flags.FLAGS
def
get_pretrainxlnet_model
(
model_config
,
run_config
):
def
get_pretrainxlnet_model
(
model_config
,
run_config
):
model
=
modeling
.
PretrainingXLNetModel
(
model_config
,
run_config
,
name
=
"model"
)
return
modeling
.
PretrainingXLNetModel
(
return
model
use_proj
=
True
,
xlnet_config
=
model_config
,
run_config
=
run_config
,
name
=
"model"
)
def
main
(
unused_argv
):
def
main
(
unused_argv
):
...
@@ -69,8 +72,7 @@ def main(unused_argv):
...
@@ -69,8 +72,7 @@ def main(unused_argv):
if
strategy
:
if
strategy
:
logging
.
info
(
"***** Number of cores used : %d"
,
logging
.
info
(
"***** Number of cores used : %d"
,
strategy
.
num_replicas_in_sync
)
strategy
.
num_replicas_in_sync
)
logging
.
info
(
"***** Number of hosts used : %d"
,
logging
.
info
(
"***** Number of hosts used : %d"
,
num_hosts
)
num_hosts
)
train_input_fn
=
functools
.
partial
(
train_input_fn
=
functools
.
partial
(
data_utils
.
get_pretrain_input_data
,
FLAGS
.
train_batch_size
,
FLAGS
.
seq_len
,
data_utils
.
get_pretrain_input_data
,
FLAGS
.
train_batch_size
,
FLAGS
.
seq_len
,
strategy
,
FLAGS
.
train_tfrecord_path
,
FLAGS
.
reuse_len
,
FLAGS
.
perm_size
,
strategy
,
FLAGS
.
train_tfrecord_path
,
FLAGS
.
reuse_len
,
FLAGS
.
perm_size
,
...
...
official/nlp/xlnet/squad_utils.py
View file @
b045ce7d
...
@@ -36,11 +36,6 @@ from official.nlp.xlnet import preprocess_utils
...
@@ -36,11 +36,6 @@ from official.nlp.xlnet import preprocess_utils
SPIECE_UNDERLINE
=
u
"▁"
SPIECE_UNDERLINE
=
u
"▁"
SEG_ID_P
=
0
SEG_ID_Q
=
1
SEG_ID_CLS
=
2
SEG_ID_PAD
=
3
class
InputFeatures
(
object
):
class
InputFeatures
(
object
):
"""A single set of features of data."""
"""A single set of features of data."""
...
@@ -705,28 +700,28 @@ def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride,
...
@@ -705,28 +700,28 @@ def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride,
split_token_index
)
split_token_index
)
token_is_max_context
[
len
(
tokens
)]
=
is_max_context
token_is_max_context
[
len
(
tokens
)]
=
is_max_context
tokens
.
append
(
all_doc_tokens
[
split_token_index
])
tokens
.
append
(
all_doc_tokens
[
split_token_index
])
segment_ids
.
append
(
SEG_ID_P
)
segment_ids
.
append
(
data_utils
.
SEG_ID_P
)
p_mask
.
append
(
0
)
p_mask
.
append
(
0
)
paragraph_len
=
len
(
tokens
)
paragraph_len
=
len
(
tokens
)
tokens
.
append
(
data_utils
.
SEP_ID
)
tokens
.
append
(
data_utils
.
SEP_ID
)
segment_ids
.
append
(
SEG_ID_P
)
segment_ids
.
append
(
data_utils
.
SEG_ID_P
)
p_mask
.
append
(
1
)
p_mask
.
append
(
1
)
# note(zhiliny): we put P before Q
# note(zhiliny): we put P before Q
# because during pretraining, B is always shorter than A
# because during pretraining, B is always shorter than A
for
token
in
query_tokens
:
for
token
in
query_tokens
:
tokens
.
append
(
token
)
tokens
.
append
(
token
)
segment_ids
.
append
(
SEG_ID_Q
)
segment_ids
.
append
(
data_utils
.
SEG_ID_Q
)
p_mask
.
append
(
1
)
p_mask
.
append
(
1
)
tokens
.
append
(
data_utils
.
SEP_ID
)
tokens
.
append
(
data_utils
.
SEP_ID
)
segment_ids
.
append
(
SEG_ID_Q
)
segment_ids
.
append
(
data_utils
.
SEG_ID_Q
)
p_mask
.
append
(
1
)
p_mask
.
append
(
1
)
cls_index
=
len
(
segment_ids
)
cls_index
=
len
(
segment_ids
)
tokens
.
append
(
data_utils
.
CLS_ID
)
tokens
.
append
(
data_utils
.
CLS_ID
)
segment_ids
.
append
(
SEG_ID_CLS
)
segment_ids
.
append
(
data_utils
.
SEG_ID_CLS
)
p_mask
.
append
(
0
)
p_mask
.
append
(
0
)
input_ids
=
tokens
input_ids
=
tokens
...
@@ -739,7 +734,7 @@ def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride,
...
@@ -739,7 +734,7 @@ def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride,
while
len
(
input_ids
)
<
max_seq_length
:
while
len
(
input_ids
)
<
max_seq_length
:
input_ids
.
append
(
0
)
input_ids
.
append
(
0
)
input_mask
.
append
(
1
)
input_mask
.
append
(
1
)
segment_ids
.
append
(
SEG_ID_PAD
)
segment_ids
.
append
(
data_utils
.
SEG_ID_PAD
)
p_mask
.
append
(
1
)
p_mask
.
append
(
1
)
assert
len
(
input_ids
)
==
max_seq_length
assert
len
(
input_ids
)
==
max_seq_length
...
...
official/nlp/xlnet_config.py
View file @
b045ce7d
...
@@ -30,7 +30,6 @@ def create_run_config(is_training, is_finetune, flags):
...
@@ -30,7 +30,6 @@ def create_run_config(is_training, is_finetune, flags):
kwargs
=
dict
(
kwargs
=
dict
(
is_training
=
is_training
,
is_training
=
is_training
,
use_tpu
=
flags
.
use_tpu
,
use_tpu
=
flags
.
use_tpu
,
use_bfloat16
=
flags
.
use_bfloat16
,
dropout
=
flags
.
dropout
,
dropout
=
flags
.
dropout
,
dropout_att
=
flags
.
dropout_att
,
dropout_att
=
flags
.
dropout_att
,
init_method
=
flags
.
init_method
,
init_method
=
flags
.
init_method
,
...
@@ -49,6 +48,7 @@ def create_run_config(is_training, is_finetune, flags):
...
@@ -49,6 +48,7 @@ def create_run_config(is_training, is_finetune, flags):
return
RunConfig
(
**
kwargs
)
return
RunConfig
(
**
kwargs
)
# TODO(hongkuny): refactor XLNetConfig and RunConfig.
class
XLNetConfig
(
object
):
class
XLNetConfig
(
object
):
"""Configs for XLNet model.
"""Configs for XLNet model.
...
@@ -131,7 +131,6 @@ class RunConfig(object):
...
@@ -131,7 +131,6 @@ class RunConfig(object):
def
__init__
(
self
,
def
__init__
(
self
,
is_training
,
is_training
,
use_tpu
,
use_tpu
,
use_bfloat16
,
dropout
,
dropout
,
dropout_att
,
dropout_att
,
init_method
=
'normal'
,
init_method
=
'normal'
,
...
@@ -141,13 +140,13 @@ class RunConfig(object):
...
@@ -141,13 +140,13 @@ class RunConfig(object):
reuse_len
=
None
,
reuse_len
=
None
,
bi_data
=
False
,
bi_data
=
False
,
clamp_len
=-
1
,
clamp_len
=-
1
,
same_length
=
False
):
same_length
=
False
,
use_cls_mask
=
True
):
"""Initializes RunConfig.
"""Initializes RunConfig.
Args:
Args:
is_training: bool, whether in training mode.
is_training: bool, whether in training mode.
use_tpu: bool, whether TPUs are used.
use_tpu: bool, whether TPUs are used.
use_bfloat16: bool, use bfloat16 instead of float32.
dropout: float, dropout rate.
dropout: float, dropout rate.
dropout_att: float, dropout rate on attention probabilities.
dropout_att: float, dropout rate on attention probabilities.
init_method: str, the initialization scheme, either "normal" or "uniform".
init_method: str, the initialization scheme, either "normal" or "uniform".
...
@@ -164,6 +163,7 @@ class RunConfig(object):
...
@@ -164,6 +163,7 @@ class RunConfig(object):
-1 means no clamping.
-1 means no clamping.
same_length: bool, whether to use the same attention length
same_length: bool, whether to use the same attention length
for each token.
for each token.
use_cls_mask: bool, whether to introduce cls mask.
"""
"""
self
.
init_method
=
init_method
self
.
init_method
=
init_method
...
@@ -173,9 +173,9 @@ class RunConfig(object):
...
@@ -173,9 +173,9 @@ class RunConfig(object):
self
.
dropout
=
dropout
self
.
dropout
=
dropout
self
.
dropout_att
=
dropout_att
self
.
dropout_att
=
dropout_att
self
.
use_tpu
=
use_tpu
self
.
use_tpu
=
use_tpu
self
.
use_bfloat16
=
use_bfloat16
self
.
mem_len
=
mem_len
self
.
mem_len
=
mem_len
self
.
reuse_len
=
reuse_len
self
.
reuse_len
=
reuse_len
self
.
bi_data
=
bi_data
self
.
bi_data
=
bi_data
self
.
clamp_len
=
clamp_len
self
.
clamp_len
=
clamp_len
self
.
same_length
=
same_length
self
.
same_length
=
same_length
self
.
use_cls_mask
=
use_cls_mask
official/nlp/xlnet_modeling.py
View file @
b045ce7d
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment