ncf_keras_main.py 17.6 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import json
Shining Sun's avatar
Shining Sun committed
26
27
28
import os

# pylint: disable=g-bad-import-order
David Chen's avatar
David Chen committed
29
from absl import app
Shining Sun's avatar
Shining Sun committed
30
from absl import flags
31
from absl import logging
Shining Sun's avatar
Shining Sun committed
32
33
34
import tensorflow as tf
# pylint: enable=g-bad-import-order

35
from official.recommendation import constants as rconst
36
from official.recommendation import movielens
Shining Sun's avatar
Shining Sun committed
37
from official.recommendation import ncf_common
38
from official.recommendation import ncf_input_pipeline
Shining Sun's avatar
Shining Sun committed
39
40
41
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
42
from official.utils.misc import distribution_utils
43
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
44
from official.utils.misc import model_helpers
Nimit Nigania's avatar
Nimit Nigania committed
45
from official.utils.flags import core as flags_core
Shining Sun's avatar
Shining Sun committed
46
47
48
49

FLAGS = flags.FLAGS


guptapriya's avatar
guptapriya committed
50
51
def metric_fn(logits, dup_mask, params):
  dup_mask = tf.cast(dup_mask, tf.float32)
52
  logits = tf.slice(logits, [0, 1], [-1, -1])
guptapriya's avatar
guptapriya committed
53
54
55
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
guptapriya's avatar
cleanup  
guptapriya committed
56
      params["match_mlperf"])
guptapriya's avatar
guptapriya committed
57
58
59
60
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


61
62
63
64
65
66
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

  def __init__(self, params):
    super(MetricLayer, self).__init__()
    self.params = params
guptapriya's avatar
guptapriya committed
67

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
  def call(self, inputs, training=False):
69
    logits, dup_mask = inputs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
71
72
73
74
75
76
77
78
79
80

    if training:
      hr_sum = 0.0
      hr_count = 0.0
    else:
      metric, metric_weights = metric_fn(logits, dup_mask, self.params)
      hr_sum = tf.reduce_sum(metric * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)

    self.add_metric(hr_sum, name="hr_sum", aggregation="mean")
    self.add_metric(hr_count, name="hr_count", aggregation="mean")
guptapriya's avatar
guptapriya committed
81
    return logits
82
83


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
class LossLayer(tf.keras.layers.Layer):
  """Pass-through loss layer for NCF model."""

  def __init__(self, loss_normalization_factor):
    super(LossLayer, self).__init__()
    self.loss_normalization_factor = loss_normalization_factor
    self.loss = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction="sum")

  def call(self, inputs):
    logits, labels, valid_pt_mask_input = inputs
    loss = self.loss(
        y_true=labels, y_pred=logits, sample_weight=valid_pt_mask_input)
    loss = loss * (1.0 / self.loss_normalization_factor)
    self.add_loss(loss)
    return logits


Shining Sun's avatar
Shining Sun committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


117
118
119
120
121
122
123
124
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
125
    self.stopped_epoch = 0
126
127
128
129
130
131
132
133
134

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
135
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
136
137
138
139
140

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
141
142
143
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
144
145
146
    return monitor_value


Shining Sun's avatar
Shining Sun committed
147
148
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
149
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
150
151

  user_input = tf.keras.layers.Input(
152
      shape=(1,), name=movielens.USER_COLUMN, dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
153
154

  item_input = tf.keras.layers.Input(
155
      shape=(1,), name=movielens.ITEM_COLUMN, dtype=tf.int32)
guptapriya's avatar
guptapriya committed
156

157
  valid_pt_mask_input = tf.keras.layers.Input(
158
      shape=(1,), name=rconst.VALID_POINT_MASK, dtype=tf.bool)
159
160

  dup_mask_input = tf.keras.layers.Input(
161
      shape=(1,), name=rconst.DUPLICATE_MASK, dtype=tf.int32)
162
163

  label_input = tf.keras.layers.Input(
164
      shape=(1,), name=rconst.TRAIN_LABEL_KEY, dtype=tf.bool)
Shining Sun's avatar
Shining Sun committed
165

166
  base_model = neumf_model.construct_model(user_input, item_input, params)
Shining Sun's avatar
Shining Sun committed
167

168
  logits = base_model.output
169

Shining Sun's avatar
Shining Sun committed
170
  zeros = tf.keras.layers.Lambda(
171
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
172
173

  softmax_logits = tf.keras.layers.concatenate(
174
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
175
176
      axis=-1)

177
178
  # Custom training loop calculates loss and metric as a part of
  # training/evaluation step function.
179
180
  if not params["keras_use_ctl"]:
    softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])
181
182
183
184
    # TODO(b/134744680): Use model.add_loss() instead once the API is well
    # supported.
    softmax_logits = LossLayer(batch_size)(
        [softmax_logits, label_input, valid_pt_mask_input])
185

Shining Sun's avatar
Shining Sun committed
186
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
187
188
189
190
191
192
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
193
194
195
196
197
198
199
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
200
201
  """Run NCF training and eval with Keras."""

202
203
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

guptapriya's avatar
guptapriya committed
204
205
206
  if FLAGS.seed is not None:
    print("Setting tf seed")
    tf.random.set_seed(FLAGS.seed)
207

Shining Sun's avatar
Shining Sun committed
208
  params = ncf_common.parse_flags(FLAGS)
209
  model_helpers.apply_clean(flags.FLAGS)
Shining Sun's avatar
Shining Sun committed
210

211
212
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
213
214
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
215
216
  params["distribute_strategy"] = strategy

217
  if not keras_utils.is_v2_0() and strategy is not None:
218
219
    logging.error("NCF Keras only works with distribution strategy in TF 2.0")
    return
guptapriya's avatar
guptapriya committed
220
  if (params["keras_use_ctl"] and (
221
      not keras_utils.is_v2_0() or strategy is None)):
222
    logging.error(
guptapriya's avatar
guptapriya committed
223
        "Custom training loop only works with tensorflow 2.0 and dist strat.")
224
    return
225
226
227
  if params["use_tpu"] and not params["keras_use_ctl"]:
    logging.error("Custom training loop must be used when using TPUStrategy.")
    return
228

229
  batch_size = params["batch_size"]
230
231
232
233
234
235
236
237
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
238
    num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
239
240
241
242
243
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
244
    with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
245
246
247
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]
Shining Sun's avatar
Shining Sun committed
248
249

  params["num_users"], params["num_items"] = num_users, num_items
250
251
252

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
guptapriya's avatar
guptapriya committed
253
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
254
    callbacks.append(early_stopping_callback)
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  (train_input_dataset, eval_input_dataset,
   num_train_steps, num_eval_steps) = \
    (ncf_input_pipeline.create_ncf_input_data(
        params, producer, input_meta_data, strategy))
  steps_per_epoch = None if generate_input_online else num_train_steps

  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
    if FLAGS.dtype == "fp16":
      optimizer = \
        tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
272
            optimizer,
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
            loss_scale=flags_core.get_loss_scale(FLAGS,
                                                 default_for_fp16="dynamic"))

    if params["keras_use_ctl"]:
      train_loss, eval_results = run_ncf_custom_training(
          params,
          strategy,
          keras_model,
          optimizer,
          callbacks,
          train_input_dataset,
          eval_input_dataset,
          num_train_steps,
          num_eval_steps,
          generate_input_online=generate_input_online)
    else:
      # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
      # a valid arg for this model. Also remove as a valid flag.
      if FLAGS.force_v2_in_keras_compile is not None:
        keras_model.compile(
            optimizer=optimizer,
            run_eagerly=FLAGS.run_eagerly,
            experimental_run_tf_function=FLAGS.force_v2_in_keras_compile)
296
      else:
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        keras_model.compile(
            optimizer=optimizer, run_eagerly=FLAGS.run_eagerly)

      history = keras_model.fit(
          train_input_dataset,
          epochs=FLAGS.train_epochs,
          steps_per_epoch=steps_per_epoch,
          callbacks=callbacks,
          validation_data=eval_input_dataset,
          validation_steps=num_eval_steps,
          verbose=2)

      logging.info("Training done. Start evaluating")

      eval_loss_and_metrics = keras_model.evaluate(
          eval_input_dataset, steps=num_eval_steps, verbose=2)

      logging.info("Keras evaluation is done.")

      # Keras evaluate() API returns scalar loss and metric values from
      # evaluation as a list. Here, the returned list would contain
      # [evaluation loss, hr sum, hr count].
      eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]

      # Format evaluation result into [eval loss, eval hit accuracy].
      eval_results = [eval_loss_and_metrics[0], eval_hit_rate]

      if history and history.history:
        train_history = history.history
        train_loss = train_history["loss"][-1]

  stats = build_stats(train_loss, eval_results, time_callback)
  return stats
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364


def run_ncf_custom_training(params,
                            strategy,
                            keras_model,
                            optimizer,
                            callbacks,
                            train_input_dataset,
                            eval_input_dataset,
                            num_train_steps,
                            num_eval_steps,
                            generate_input_online=True):
  """Runs custom training loop.

  Args:
    params: Dictionary containing training parameters.
    strategy: Distribution strategy to be used for distributed training.
    keras_model: Model used for training.
    optimizer: Optimizer used for training.
    callbacks: Callbacks to be invoked between batches/epochs.
    train_input_dataset: tf.data.Dataset used for training.
    eval_input_dataset: tf.data.Dataset used for evaluation.
    num_train_steps: Total number of steps to run for training.
    num_eval_steps: Total number of steps to run for evaluation.
    generate_input_online: Whether input data was generated by data producer.
      When data is generated by data producer, then train dataset must be
      re-initialized after every epoch.

  Returns:
    A tuple of train loss and a list of training and evaluation results.
  """
  loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
      reduction="sum", from_logits=True)
  train_input_iterator = iter(
      strategy.experimental_distribute_dataset(train_input_dataset))
365

366
367
  def train_step(train_iterator):
    """Called once per step to train the model."""
368

369
370
371
372
373
374
375
376
377
378
    def step_fn(features):
      """Computes loss and applied gradient per replica."""
      with tf.GradientTape() as tape:
        softmax_logits = keras_model(features)
        labels = features[rconst.TRAIN_LABEL_KEY]
        loss = loss_object(
            labels,
            softmax_logits,
            sample_weight=features[rconst.VALID_POINT_MASK])
        loss *= (1.0 / params["batch_size"])
Nimit Nigania's avatar
Nimit Nigania committed
379
380
        if FLAGS.dtype == "fp16":
          loss = optimizer.get_scaled_loss(loss)
381
382

      grads = tape.gradient(loss, keras_model.trainable_variables)
Nimit Nigania's avatar
Nimit Nigania committed
383
384
      if FLAGS.dtype == "fp16":
        grads = optimizer.get_unscaled_gradients(grads)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
      # Converting gradients to dense form helps in perf on GPU for NCF
      grads = neumf_model.sparse_to_dense_grads(
          list(zip(grads, keras_model.trainable_variables)))
      optimizer.apply_gradients(grads)
      return loss

    per_replica_losses = strategy.experimental_run_v2(
        step_fn, args=(next(train_iterator),))
    mean_loss = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
    return mean_loss

  def eval_step(eval_iterator):
    """Called once per eval step to compute eval metrics."""

    def step_fn(features):
      """Computes eval metrics per replica."""
      softmax_logits = keras_model(features)
      in_top_k, metric_weights = metric_fn(softmax_logits,
                                           features[rconst.DUPLICATE_MASK],
                                           params)
      hr_sum = tf.reduce_sum(in_top_k * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)
      return hr_sum, hr_count
409

410
411
412
413
414
415
416
417
    per_replica_hr_sum, per_replica_hr_count = (
        strategy.experimental_run_v2(
            step_fn, args=(next(eval_iterator),)))
    hr_sum = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
    hr_count = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
    return hr_sum, hr_count
418

419
420
421
  if not FLAGS.run_eagerly:
    train_step = tf.function(train_step)
    eval_step = tf.function(eval_step)
422

423
424
  for callback in callbacks:
    callback.on_train_begin()
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  train_loss = 0
  for epoch in range(FLAGS.train_epochs):
    for cb in callbacks:
      cb.on_epoch_begin(epoch)

    # As NCF dataset is sampled with randomness, not repeating
    # data elements in each epoch has significant impact on
    # convergence. As so, offline-generated TF record files
    # contains all epoch worth of data. Thus we do not need
    # to initialize dataset when reading from tf record files.
    if generate_input_online:
      train_input_iterator = iter(
          strategy.experimental_distribute_dataset(train_input_dataset))

    train_loss = 0
    for step in range(num_train_steps):
      current_step = step + epoch * num_train_steps
      for c in callbacks:
        c.on_batch_begin(current_step)

      train_loss += train_step(train_input_iterator)

      for c in callbacks:
        c.on_batch_end(current_step)

    train_loss /= num_train_steps
    logging.info("Done training epoch %s, epoch loss=%s.", epoch + 1,
                 train_loss)

    eval_input_iterator = iter(
        strategy.experimental_distribute_dataset(eval_input_dataset))
    hr_sum = 0
    hr_count = 0
    for _ in range(num_eval_steps):
      step_hr_sum, step_hr_count = eval_step(eval_input_iterator)
      hr_sum += step_hr_sum
      hr_count += step_hr_count

    logging.info("Done eval epoch %s, hr=%s.", epoch + 1, hr_sum / hr_count)

    if (FLAGS.early_stopping and
        float(hr_sum / hr_count) > params["hr_threshold"]):
      break

  for c in callbacks:
    c.on_train_end()

  return train_loss, [None, hr_sum / hr_count]
474
475


476
def build_stats(loss, eval_result, time_callback):
477
478
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
479
480
481
482
483
484
485
486
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
487
488
  """
  stats = {}
489
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
490
    stats["loss"] = loss
491
492

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
493
494
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
495
496
497

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
498
499
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
500
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
501
      stats["avg_exp_per_second"] = (
502
503
504
505
506
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
507
508
509
510
511
512
513
514
515
516
517


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    run_ncf(FLAGS)


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
David Chen's avatar
David Chen committed
518
  app.run(main)