logger.py 16.1 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

16
17
18
"""Logging utilities for benchmark.

For collecting local environment metrics like CPU and memory, certain python
19
packages need be installed. See README for details.
20
"""
Scott Zhu's avatar
Scott Zhu committed
21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
Scott Zhu's avatar
Scott Zhu committed
26
27
import datetime
import json
28
import multiprocessing
Scott Zhu's avatar
Scott Zhu committed
29
30
import numbers
import os
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
31
import threading
32
import uuid
Scott Zhu's avatar
Scott Zhu committed
33

34
35
from six.moves import _thread as thread
from absl import flags
Scott Zhu's avatar
Scott Zhu committed
36
import tensorflow as tf
37
from tensorflow.python.client import device_lib
Scott Zhu's avatar
Scott Zhu committed
38

39
40
from official.utils.logs import cloud_lib

41
42
METRIC_LOG_FILE_NAME = "metric.log"
BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log"
Scott Zhu's avatar
Scott Zhu committed
43
_DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"
44
GCP_TEST_ENV = "GCP"
45
46
47
RUN_STATUS_SUCCESS = "success"
RUN_STATUS_FAILURE = "failure"
RUN_STATUS_RUNNING = "running"
Scott Zhu's avatar
Scott Zhu committed
48

49

50
FLAGS = flags.FLAGS
Scott Zhu's avatar
Scott Zhu committed
51

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
52
53
54
# Don't use it directly. Use get_benchmark_logger to access a logger.
_benchmark_logger = None
_logger_lock = threading.Lock()
Scott Zhu's avatar
Scott Zhu committed
55
56


57
def config_benchmark_logger(flag_obj=None):
Karmel Allison's avatar
Karmel Allison committed
58
  """Config the global benchmark logger."""
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
59
60
61
  _logger_lock.acquire()
  try:
    global _benchmark_logger
62
63
64
    if not flag_obj:
      flag_obj = FLAGS

Karmel Allison's avatar
Karmel Allison committed
65
66
    if (not hasattr(flag_obj, "benchmark_logger_type") or
        flag_obj.benchmark_logger_type == "BaseBenchmarkLogger"):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
67
      _benchmark_logger = BaseBenchmarkLogger()
Karmel Allison's avatar
Karmel Allison committed
68
    elif flag_obj.benchmark_logger_type == "BenchmarkFileLogger":
69
      _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir)
Karmel Allison's avatar
Karmel Allison committed
70
71
    elif flag_obj.benchmark_logger_type == "BenchmarkBigQueryLogger":
      from official.benchmark import benchmark_uploader as bu  # pylint: disable=g-import-not-at-top
72
73
74
75
76
      bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project)
      _benchmark_logger = BenchmarkBigQueryLogger(
          bigquery_uploader=bq_uploader,
          bigquery_data_set=flag_obj.bigquery_data_set,
          bigquery_run_table=flag_obj.bigquery_run_table,
77
          bigquery_run_status_table=flag_obj.bigquery_run_status_table,
78
79
80
          bigquery_metric_table=flag_obj.bigquery_metric_table,
          run_id=str(uuid.uuid4()))
    else:
Karmel Allison's avatar
Karmel Allison committed
81
82
      raise ValueError("Unrecognized benchmark_logger_type: %s"
                       % flag_obj.benchmark_logger_type)
83

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
84
85
86
87
88
89
90
  finally:
    _logger_lock.release()
  return _benchmark_logger


def get_benchmark_logger():
  if not _benchmark_logger:
91
    config_benchmark_logger()
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
92
93
94
  return _benchmark_logger


95
96
97
98
99
100
101
102
103
104
105
106
107
@contextlib.contextmanager
def benchmark_context(flag_obj):
  """Context of benchmark, which will update status of the run accordingly."""
  benchmark_logger = config_benchmark_logger(flag_obj)
  try:
    yield
    benchmark_logger.on_finish(RUN_STATUS_SUCCESS)
  except Exception:  # pylint: disable=broad-except
    # Catch all the exception, update the run status to be failure, and re-raise
    benchmark_logger.on_finish(RUN_STATUS_FAILURE)
    raise


Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
108
109
110
111
112
class BaseBenchmarkLogger(object):
  """Class to log the benchmark information to STDOUT."""

  def log_evaluation_result(self, eval_results):
    """Log the evaluation result.
113

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
114
    The evaluate result is a dictionary that contains metrics defined in
115
116
117
118
    model_fn. It also contains a entry for global_step which contains the value
    of the global step when evaluation was performed.

    Args:
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
119
      eval_results: dict, the result of evaluate.
120
121
    """
    if not isinstance(eval_results, dict):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
122
123
      tf.logging.warning("eval_results should be dictionary for logging. "
                         "Got %s", type(eval_results))
124
125
      return
    global_step = eval_results[tf.GraphKeys.GLOBAL_STEP]
126
    for key in sorted(eval_results):
127
128
129
      if key != tf.GraphKeys.GLOBAL_STEP:
        self.log_metric(key, eval_results[key], global_step=global_step)

Scott Zhu's avatar
Scott Zhu committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
144
145
146
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      tf.logging.info("Benchmark metric: %s", metric)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
147

148
  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
149
    tf.logging.info("Benchmark run: %s",
150
151
                    _gather_run_info(model_name, dataset_name, run_params,
                                     test_id))
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
152

153
154
155
  def on_finish(self, status):
    pass

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
156
157
158
159
160
161
162
163
164

class BenchmarkFileLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to local disk."""

  def __init__(self, logging_dir):
    super(BenchmarkFileLogger, self).__init__()
    self._logging_dir = logging_dir
    if not tf.gfile.IsDirectory(self._logging_dir):
      tf.gfile.MakeDirs(self._logging_dir)
165
166
    self._metric_file_handler = tf.gfile.GFile(
        os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a")
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
182
183
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
184
185
186
187
188
189
190
      try:
        json.dump(metric, self._metric_file_handler)
        self._metric_file_handler.write("\n")
        self._metric_file_handler.flush()
      except (TypeError, ValueError) as e:
        tf.logging.warning("Failed to dump metric to log file: "
                           "name %s, value %s, error %s", name, value, e)
191

192
  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
193
194
195
196
197
198
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
199
200
201
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
202
203
      test_id: string, the unique name of the test run by the combination of key
        parameters, eg batch size, num of GPU. It is hardware independent.
204
    """
205
    run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
206
207

    with tf.gfile.GFile(os.path.join(
208
        self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
209
210
211
212
213
214
215
      try:
        json.dump(run_info, f)
        f.write("\n")
      except (TypeError, ValueError) as e:
        tf.logging.warning("Failed to dump benchmark run info to log file: %s",
                           e)

216
  def on_finish(self, status):
217
218
    self._metric_file_handler.flush()
    self._metric_file_handler.close()
219

220

221
222
223
224
225
226
227
class BenchmarkBigQueryLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to BigQuery data store."""

  def __init__(self,
               bigquery_uploader,
               bigquery_data_set,
               bigquery_run_table,
228
               bigquery_run_status_table,
229
230
231
232
233
234
               bigquery_metric_table,
               run_id):
    super(BenchmarkBigQueryLogger, self).__init__()
    self._bigquery_uploader = bigquery_uploader
    self._bigquery_data_set = bigquery_data_set
    self._bigquery_run_table = bigquery_run_table
235
    self._bigquery_run_status_table = bigquery_run_status_table
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    self._bigquery_metric_table = bigquery_metric_table
    self._run_id = run_id

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to bigquery.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      # Starting new thread for bigquery upload in case it might take long time
      # and impact the benchmark and performance measurement. Starting a new
      # thread might have potential performance impact for model that run on
      # CPU.
      thread.start_new_thread(
          self._bigquery_uploader.upload_benchmark_metric_json,
          (self._bigquery_data_set,
           self._bigquery_metric_table,
           self._run_id,
           [metric]))

263
  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
264
265
266
267
268
269
270
271
272
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
273
274
      test_id: string, the unique name of the test run by the combination of key
        parameters, eg batch size, num of GPU. It is hardware independent.
275
    """
276
    run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
277
278
279
280
281
282
283
284
285
    # Starting new thread for bigquery upload in case it might take long time
    # and impact the benchmark and performance measurement. Starting a new
    # thread might have potential performance impact for model that run on CPU.
    thread.start_new_thread(
        self._bigquery_uploader.upload_benchmark_run_json,
        (self._bigquery_data_set,
         self._bigquery_run_table,
         self._run_id,
         run_info))
286
287
288
289
290
291
292
293
    thread.start_new_thread(
        self._bigquery_uploader.insert_run_status,
        (self._bigquery_data_set,
         self._bigquery_run_status_table,
         self._run_id,
         RUN_STATUS_RUNNING))

  def on_finish(self, status):
294
295
296
297
298
    self._bigquery_uploader.update_run_status(
        self._bigquery_data_set,
        self._bigquery_run_status_table,
        self._run_id,
        status)
299

Karmel Allison's avatar
Karmel Allison committed
300

301
def _gather_run_info(model_name, dataset_name, run_params, test_id):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
302
303
304
  """Collect the benchmark run information for the local environment."""
  run_info = {
      "model_name": model_name,
305
      "dataset": {"name": dataset_name},
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
306
      "machine_config": {},
307
      "test_id": test_id,
308
309
      "run_date": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN)}
310
311
312
313
  if "session_config" in run_params:
    session_config=run_params["session_config"]
  else:
    session_config=None
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
314
315
  _collect_tensorflow_info(run_info)
  _collect_tensorflow_environment_variables(run_info)
316
  _collect_run_params(run_info, run_params)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
317
  _collect_cpu_info(run_info)
Sami Kama's avatar
Sami Kama committed
318
  _collect_gpu_info(run_info, session_config)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
319
  _collect_memory_info(run_info)
320
  _collect_test_environment(run_info)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
321
322
323
  return run_info


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def _process_metric_to_json(
    name, value, unit=None, global_step=None, extras=None):
  """Validate the metric data and generate JSON for insert."""
  if not isinstance(value, numbers.Number):
    tf.logging.warning(
        "Metric value to log should be a number. Got %s", type(value))
    return None

  extras = _convert_to_json_dict(extras)
  return {
      "name": name,
      "value": float(value),
      "unit": unit,
      "global_step": global_step,
      "timestamp": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN),
      "extras": extras}


343
344
345
346
347
def _collect_tensorflow_info(run_info):
  run_info["tensorflow_version"] = {
      "version": tf.VERSION, "git_hash": tf.GIT_VERSION}


348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def _collect_run_params(run_info, run_params):
  """Log the parameter information for the benchmark run."""
  def process_param(name, value):
    type_check = {
        str: {"name": name, "string_value": value},
        int: {"name": name, "long_value": value},
        bool: {"name": name, "bool_value": str(value)},
        float: {"name": name, "float_value": value},
    }
    return type_check.get(type(value),
                          {"name": name, "string_value": str(value)})
  if run_params:
    run_info["run_parameters"] = [
        process_param(k, v) for k, v in sorted(run_params.items())]

Karmel Allison's avatar
Karmel Allison committed
363

364
def _collect_tensorflow_environment_variables(run_info):
365
366
367
  run_info["tensorflow_environment_variables"] = [
      {"name": k, "value": v}
      for k, v in sorted(os.environ.items()) if k.startswith("TF_")]
368
369
370
371
372
373
374
375
376
377


# The following code is mirrored from tensorflow/tools/test/system_info_lib
# which is not exposed for import.
def _collect_cpu_info(run_info):
  """Collect the CPU information for the local environment."""
  cpu_info = {}

  cpu_info["num_cores"] = multiprocessing.cpu_count()

378
379
380
381
  try:
    # Note: cpuinfo is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import cpuinfo    # pylint: disable=g-import-not-at-top
382

383
384
385
    info = cpuinfo.get_cpu_info()
    cpu_info["cpu_info"] = info["brand"]
    cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6
386

387
388
389
    run_info["machine_config"]["cpu_info"] = cpu_info
  except ImportError:
    tf.logging.warn("'cpuinfo' not imported. CPU info will not be logged.")
390
391


Sami Kama's avatar
Sami Kama committed
392
def _collect_gpu_info(run_info, session_config=None):
393
394
  """Collect local GPU information by TF device library."""
  gpu_info = {}
395
  local_device_protos = device_lib.list_local_devices(session_config)
396
397
398
399
400
401
402
403
404
405
406

  gpu_info["count"] = len([d for d in local_device_protos
                           if d.device_type == "GPU"])
  # The device description usually is a JSON string, which contains the GPU
  # model info, eg:
  # "device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0"
  for d in local_device_protos:
    if d.device_type == "GPU":
      gpu_info["model"] = _parse_gpu_model(d.physical_device_desc)
      # Assume all the GPU connected are same model
      break
407
  run_info["machine_config"]["gpu_info"] = gpu_info
408
409
410


def _collect_memory_info(run_info):
411
412
413
414
415
416
417
418
419
  try:
    # Note: psutil is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import psutil   # pylint: disable=g-import-not-at-top
    vmem = psutil.virtual_memory()
    run_info["machine_config"]["memory_total"] = vmem.total
    run_info["machine_config"]["memory_available"] = vmem.available
  except ImportError:
    tf.logging.warn("'psutil' not imported. Memory info will not be logged.")
420
421


422
423
424
425
426
427
428
def _collect_test_environment(run_info):
  """Detect the local environment, eg GCE, AWS or DGX, etc."""
  if cloud_lib.on_gcp():
    run_info["test_environment"] = GCP_TEST_ENV
  # TODO(scottzhu): Add more testing env detection for other platform


429
430
431
432
433
434
435
def _parse_gpu_model(physical_device_desc):
  # Assume all the GPU connected are same model
  for kv in physical_device_desc.split(","):
    k, _, v = kv.partition(":")
    if k.strip() == "name":
      return v.strip()
  return None
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
436
437
438
439
440
441
442


def _convert_to_json_dict(input_dict):
  if input_dict:
    return [{"name": k, "value": v} for k, v in sorted(input_dict.items())]
  else:
    return []