logger.py 15 KB
Newer Older
Scott Zhu's avatar
Scott Zhu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

16
17
18
"""Logging utilities for benchmark.

For collecting local environment metrics like CPU and memory, certain python
19
packages need be installed. See README for details.
20
"""
Scott Zhu's avatar
Scott Zhu committed
21
22
23
24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import contextlib
Scott Zhu's avatar
Scott Zhu committed
26
27
import datetime
import json
28
import multiprocessing
Scott Zhu's avatar
Scott Zhu committed
29
30
import numbers
import os
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
31
import threading
32
import uuid
Scott Zhu's avatar
Scott Zhu committed
33

34
35
from six.moves import _thread as thread
from absl import flags
Scott Zhu's avatar
Scott Zhu committed
36
import tensorflow as tf
37
from tensorflow.python.client import device_lib
Scott Zhu's avatar
Scott Zhu committed
38

39
40
METRIC_LOG_FILE_NAME = "metric.log"
BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log"
Scott Zhu's avatar
Scott Zhu committed
41
_DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"
42
43
44
RUN_STATUS_SUCCESS = "success"
RUN_STATUS_FAILURE = "failure"
RUN_STATUS_RUNNING = "running"
Scott Zhu's avatar
Scott Zhu committed
45

46
FLAGS = flags.FLAGS
Scott Zhu's avatar
Scott Zhu committed
47

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
48
49
50
# Don't use it directly. Use get_benchmark_logger to access a logger.
_benchmark_logger = None
_logger_lock = threading.Lock()
Scott Zhu's avatar
Scott Zhu committed
51
52


53
def config_benchmark_logger(flag_obj=None):
Karmel Allison's avatar
Karmel Allison committed
54
  """Config the global benchmark logger."""
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
55
56
57
  _logger_lock.acquire()
  try:
    global _benchmark_logger
58
59
60
    if not flag_obj:
      flag_obj = FLAGS

Karmel Allison's avatar
Karmel Allison committed
61
62
    if (not hasattr(flag_obj, "benchmark_logger_type") or
        flag_obj.benchmark_logger_type == "BaseBenchmarkLogger"):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
63
      _benchmark_logger = BaseBenchmarkLogger()
Karmel Allison's avatar
Karmel Allison committed
64
    elif flag_obj.benchmark_logger_type == "BenchmarkFileLogger":
65
      _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir)
Karmel Allison's avatar
Karmel Allison committed
66
67
    elif flag_obj.benchmark_logger_type == "BenchmarkBigQueryLogger":
      from official.benchmark import benchmark_uploader as bu  # pylint: disable=g-import-not-at-top
68
69
70
71
72
      bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project)
      _benchmark_logger = BenchmarkBigQueryLogger(
          bigquery_uploader=bq_uploader,
          bigquery_data_set=flag_obj.bigquery_data_set,
          bigquery_run_table=flag_obj.bigquery_run_table,
73
          bigquery_run_status_table=flag_obj.bigquery_run_status_table,
74
75
76
          bigquery_metric_table=flag_obj.bigquery_metric_table,
          run_id=str(uuid.uuid4()))
    else:
Karmel Allison's avatar
Karmel Allison committed
77
78
      raise ValueError("Unrecognized benchmark_logger_type: %s"
                       % flag_obj.benchmark_logger_type)
79

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
80
81
82
83
84
85
86
  finally:
    _logger_lock.release()
  return _benchmark_logger


def get_benchmark_logger():
  if not _benchmark_logger:
87
    config_benchmark_logger()
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
88
89
90
  return _benchmark_logger


91
92
93
94
95
96
97
98
99
100
101
102
103
@contextlib.contextmanager
def benchmark_context(flag_obj):
  """Context of benchmark, which will update status of the run accordingly."""
  benchmark_logger = config_benchmark_logger(flag_obj)
  try:
    yield
    benchmark_logger.on_finish(RUN_STATUS_SUCCESS)
  except Exception:  # pylint: disable=broad-except
    # Catch all the exception, update the run status to be failure, and re-raise
    benchmark_logger.on_finish(RUN_STATUS_FAILURE)
    raise


Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
104
105
106
107
108
class BaseBenchmarkLogger(object):
  """Class to log the benchmark information to STDOUT."""

  def log_evaluation_result(self, eval_results):
    """Log the evaluation result.
109

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
110
    The evaluate result is a dictionary that contains metrics defined in
111
112
113
114
    model_fn. It also contains a entry for global_step which contains the value
    of the global step when evaluation was performed.

    Args:
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
115
      eval_results: dict, the result of evaluate.
116
117
    """
    if not isinstance(eval_results, dict):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
118
119
      tf.logging.warning("eval_results should be dictionary for logging. "
                         "Got %s", type(eval_results))
120
121
      return
    global_step = eval_results[tf.GraphKeys.GLOBAL_STEP]
122
    for key in sorted(eval_results):
123
124
125
      if key != tf.GraphKeys.GLOBAL_STEP:
        self.log_metric(key, eval_results[key], global_step=global_step)

Scott Zhu's avatar
Scott Zhu committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
140
141
142
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      tf.logging.info("Benchmark metric: %s", metric)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
143

144
145
146
  def log_run_info(self, model_name, dataset_name, run_params):
    tf.logging.info("Benchmark run: %s",
                    _gather_run_info(model_name, dataset_name, run_params))
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
147

148
149
150
  def on_finish(self, status):
    pass

Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

class BenchmarkFileLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to local disk."""

  def __init__(self, logging_dir):
    super(BenchmarkFileLogger, self).__init__()
    self._logging_dir = logging_dir
    if not tf.gfile.IsDirectory(self._logging_dir):
      tf.gfile.MakeDirs(self._logging_dir)

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
175
176
177
178
179
180
181
182
183
184
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      with tf.gfile.GFile(
          os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a") as f:
        try:
          json.dump(metric, f)
          f.write("\n")
        except (TypeError, ValueError) as e:
          tf.logging.warning("Failed to dump metric to log file: "
                             "name %s, value %s, error %s", name, value, e)
185

186
  def log_run_info(self, model_name, dataset_name, run_params):
187
188
189
190
191
192
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
193
194
195
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
196
    """
197
    run_info = _gather_run_info(model_name, dataset_name, run_params)
198
199

    with tf.gfile.GFile(os.path.join(
200
        self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
201
202
203
204
205
206
207
      try:
        json.dump(run_info, f)
        f.write("\n")
      except (TypeError, ValueError) as e:
        tf.logging.warning("Failed to dump benchmark run info to log file: %s",
                           e)

208
209
210
  def on_finish(self, status):
    pass

211

212
213
214
215
216
217
218
class BenchmarkBigQueryLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to BigQuery data store."""

  def __init__(self,
               bigquery_uploader,
               bigquery_data_set,
               bigquery_run_table,
219
               bigquery_run_status_table,
220
221
222
223
224
225
               bigquery_metric_table,
               run_id):
    super(BenchmarkBigQueryLogger, self).__init__()
    self._bigquery_uploader = bigquery_uploader
    self._bigquery_data_set = bigquery_data_set
    self._bigquery_run_table = bigquery_run_table
226
    self._bigquery_run_status_table = bigquery_run_status_table
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    self._bigquery_metric_table = bigquery_metric_table
    self._run_id = run_id

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to bigquery.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      # Starting new thread for bigquery upload in case it might take long time
      # and impact the benchmark and performance measurement. Starting a new
      # thread might have potential performance impact for model that run on
      # CPU.
      thread.start_new_thread(
          self._bigquery_uploader.upload_benchmark_metric_json,
          (self._bigquery_data_set,
           self._bigquery_metric_table,
           self._run_id,
           [metric]))

  def log_run_info(self, model_name, dataset_name, run_params):
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
    """
    run_info = _gather_run_info(model_name, dataset_name, run_params)
    # Starting new thread for bigquery upload in case it might take long time
    # and impact the benchmark and performance measurement. Starting a new
    # thread might have potential performance impact for model that run on CPU.
    thread.start_new_thread(
        self._bigquery_uploader.upload_benchmark_run_json,
        (self._bigquery_data_set,
         self._bigquery_run_table,
         self._run_id,
         run_info))
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    thread.start_new_thread(
        self._bigquery_uploader.insert_run_status,
        (self._bigquery_data_set,
         self._bigquery_run_status_table,
         self._run_id,
         RUN_STATUS_RUNNING))

  def on_finish(self, status):
    thread.start_new_thread(
        self._bigquery_uploader.update_run_status,
        (self._bigquery_data_set,
         self._bigquery_run_status_table,
         self._run_id,
         status))
289

Karmel Allison's avatar
Karmel Allison committed
290

291
def _gather_run_info(model_name, dataset_name, run_params):
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
292
293
294
  """Collect the benchmark run information for the local environment."""
  run_info = {
      "model_name": model_name,
295
      "dataset": {"name": dataset_name},
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
296
      "machine_config": {},
297
298
      "run_date": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN)}
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
299
300
  _collect_tensorflow_info(run_info)
  _collect_tensorflow_environment_variables(run_info)
301
  _collect_run_params(run_info, run_params)
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
302
303
304
305
306
307
  _collect_cpu_info(run_info)
  _collect_gpu_info(run_info)
  _collect_memory_info(run_info)
  return run_info


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def _process_metric_to_json(
    name, value, unit=None, global_step=None, extras=None):
  """Validate the metric data and generate JSON for insert."""
  if not isinstance(value, numbers.Number):
    tf.logging.warning(
        "Metric value to log should be a number. Got %s", type(value))
    return None

  extras = _convert_to_json_dict(extras)
  return {
      "name": name,
      "value": float(value),
      "unit": unit,
      "global_step": global_step,
      "timestamp": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN),
      "extras": extras}


327
328
329
330
331
def _collect_tensorflow_info(run_info):
  run_info["tensorflow_version"] = {
      "version": tf.VERSION, "git_hash": tf.GIT_VERSION}


332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def _collect_run_params(run_info, run_params):
  """Log the parameter information for the benchmark run."""
  def process_param(name, value):
    type_check = {
        str: {"name": name, "string_value": value},
        int: {"name": name, "long_value": value},
        bool: {"name": name, "bool_value": str(value)},
        float: {"name": name, "float_value": value},
    }
    return type_check.get(type(value),
                          {"name": name, "string_value": str(value)})
  if run_params:
    run_info["run_parameters"] = [
        process_param(k, v) for k, v in sorted(run_params.items())]

Karmel Allison's avatar
Karmel Allison committed
347

348
def _collect_tensorflow_environment_variables(run_info):
349
350
351
  run_info["tensorflow_environment_variables"] = [
      {"name": k, "value": v}
      for k, v in sorted(os.environ.items()) if k.startswith("TF_")]
352
353
354
355
356
357
358
359
360
361


# The following code is mirrored from tensorflow/tools/test/system_info_lib
# which is not exposed for import.
def _collect_cpu_info(run_info):
  """Collect the CPU information for the local environment."""
  cpu_info = {}

  cpu_info["num_cores"] = multiprocessing.cpu_count()

362
363
364
365
  try:
    # Note: cpuinfo is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import cpuinfo    # pylint: disable=g-import-not-at-top
366

367
368
369
    info = cpuinfo.get_cpu_info()
    cpu_info["cpu_info"] = info["brand"]
    cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6
370

371
372
373
    run_info["machine_config"]["cpu_info"] = cpu_info
  except ImportError:
    tf.logging.warn("'cpuinfo' not imported. CPU info will not be logged.")
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390


def _collect_gpu_info(run_info):
  """Collect local GPU information by TF device library."""
  gpu_info = {}
  local_device_protos = device_lib.list_local_devices()

  gpu_info["count"] = len([d for d in local_device_protos
                           if d.device_type == "GPU"])
  # The device description usually is a JSON string, which contains the GPU
  # model info, eg:
  # "device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0"
  for d in local_device_protos:
    if d.device_type == "GPU":
      gpu_info["model"] = _parse_gpu_model(d.physical_device_desc)
      # Assume all the GPU connected are same model
      break
391
  run_info["machine_config"]["gpu_info"] = gpu_info
392
393
394


def _collect_memory_info(run_info):
395
396
397
398
399
400
401
402
403
  try:
    # Note: psutil is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import psutil   # pylint: disable=g-import-not-at-top
    vmem = psutil.virtual_memory()
    run_info["machine_config"]["memory_total"] = vmem.total
    run_info["machine_config"]["memory_available"] = vmem.available
  except ImportError:
    tf.logging.warn("'psutil' not imported. Memory info will not be logged.")
404
405
406
407
408
409
410
411
412


def _parse_gpu_model(physical_device_desc):
  # Assume all the GPU connected are same model
  for kv in physical_device_desc.split(","):
    k, _, v = kv.partition(":")
    if k.strip() == "name":
      return v.strip()
  return None
Qianli Scott Zhu's avatar
Qianli Scott Zhu committed
413
414
415
416
417
418
419


def _convert_to_json_dict(input_dict):
  if input_dict:
    return [{"name": k, "value": v} for k, v in sorted(input_dict.items())]
  else:
    return []