Commit 57bc50c5 authored by Scott Zhu's avatar Scott Zhu
Browse files

Revert the rebased change.

parent 6d829caa
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Logging utilities for benchmark."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datetime
import json
import numbers
import os
import tensorflow as tf
_METRIC_LOG_FILE_NAME = "metric.log"
_DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"
class BenchmarkLogger(object):
"""Class to log the benchmark information to local disk."""
def __init__(self, logging_dir):
self._logging_dir = logging_dir
if not tf.gfile.IsDirectory(self._logging_dir):
tf.gfile.MakeDirs(self._logging_dir)
def log_metric(self, name, value, unit=None, global_step=None, extras=None):
"""Log the benchmark metric information to local file.
Currently the logging is done in a synchronized way. This should be updated
to log asynchronously.
Args:
name: string, the name of the metric to log.
value: number, the value of the metric. The value will not be logged if it
is not a number type.
unit: string, the unit of the metric, E.g "image per second".
global_step: int, the global_step when the metric is logged.
extras: map of string:string, the extra information about the metric.
"""
if not isinstance(value, numbers.Number):
tf.logging.warning(
"Metric value to log should be a number. Got %s", type(value))
return
with tf.gfile.GFile(
os.path.join(self._logging_dir, _METRIC_LOG_FILE_NAME), "a") as f:
metric = {
"name": name,
"value": value,
"unit": unit,
"global_step": global_step,
"timestamp": datetime.datetime.now().strftime(
_DATE_TIME_FORMAT_PATTERN),
"extras": extras}
json.dump(metric, f)
f.write("\n")
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for benchmark logger."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import tempfile
from official.benchmark import logger
import tensorflow as tf
class BenchmarkLoggerTest(tf.test.TestCase):
def tearDown(self):
tf.gfile.DeleteRecursively(self.get_temp_dir())
def test_create_logging_dir(self):
non_exist_temp_dir = os.path.join(self.get_temp_dir(), "unknown_dir")
self.assertFalse(tf.gfile.IsDirectory(non_exist_temp_dir))
logger.BenchmarkLogger(non_exist_temp_dir)
self.assertTrue(tf.gfile.IsDirectory(non_exist_temp_dir))
def test_log_metric(self):
log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
log = logger.BenchmarkLogger(log_dir)
log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})
metric_log = os.path.join(log_dir, "metric.log")
self.assertTrue(tf.gfile.Exists(metric_log))
with tf.gfile.GFile(metric_log) as f:
metric = json.loads(f.readline())
self.assertEqual(metric["name"], "accuracy")
self.assertEqual(metric["value"], 0.999)
self.assertEqual(metric["unit"], None)
self.assertEqual(metric["global_step"], 1e4)
self.assertEqual(metric["extras"], {"name": "value"})
def test_log_multiple_metrics(self):
log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
log = logger.BenchmarkLogger(log_dir)
log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"})
log.log_metric("loss", 0.02, global_step=1e4)
metric_log = os.path.join(log_dir, "metric.log")
self.assertTrue(tf.gfile.Exists(metric_log))
with tf.gfile.GFile(metric_log) as f:
accuracy = json.loads(f.readline())
self.assertEqual(accuracy["name"], "accuracy")
self.assertEqual(accuracy["value"], 0.999)
self.assertEqual(accuracy["unit"], None)
self.assertEqual(accuracy["global_step"], 1e4)
self.assertEqual(accuracy["extras"], {"name": "value"})
loss = json.loads(f.readline())
self.assertEqual(loss["name"], "loss")
self.assertEqual(loss["value"], 0.02)
self.assertEqual(loss["unit"], None)
self.assertEqual(loss["global_step"], 1e4)
def test_log_non_nubmer_value(self):
log_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
log = logger.BenchmarkLogger(log_dir)
const = tf.constant(1)
log.log_metric("accuracy", const)
metric_log = os.path.join(log_dir, "metric.log")
self.assertFalse(tf.gfile.Exists(metric_log))
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment